We demonstrate the first formation of stable, multistate switchable monolayers of polyoxometalates (POMs), which can be electronically triggered to higher charged states with increased conductance in the current-voltage profile at room temperature. These responsive two-dimensional monolayers are based on a fully oxidised dodecavanadate cage (POV12) equipped with Dy(III)-doped phthalocyanine (Pc) macrocycles adopting the face-on orientation on highly oriented pyrolytic graphite (HOPG). The layers can be lithographically processed by the tip of a scanning tunnelling microscope (STM) to machine patterns with diameters ranging from 30 to 150 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nh00345kDOI Listing

Publication Analysis

Top Keywords

scanning tunnelling
8
multistate switching
4
switching scanning
4
tunnelling microscopy
4
microscopy machined
4
machined polyoxovanadate-dysprosium-phthalocyanine
4
polyoxovanadate-dysprosium-phthalocyanine nanopatterns
4
nanopatterns graphite
4
graphite demonstrate
4
demonstrate formation
4

Similar Publications

The effect of solution pH on the formation and surface structure of 2-pyrazinethiolate (2-PyzS) self-assembled monolayers (SAMs) formed by the adsorption of 2-mercaptopyrazine (2-PyzSH) on Au(111) was investigated using scanning tunneling microscopy (STM) and X-ray photoelectron microscopy (XPS). Molecular-scale STM observations clearly revealed that 2-PyzS SAMs at pH 2 had a short-range ordered phase of (2√3 × √21)R30° structure with a standing-up adsorption structure. However, 2-PyzS SAMs at pH 8 had a very unique long-range ordered phase, showing a "ladder-like molecular arrangement" with bright repeating rows.

View Article and Find Full Text PDF

Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations.

View Article and Find Full Text PDF

Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.

View Article and Find Full Text PDF

An Atomistic Analysis of the Carpet Growth of KCl Across Step Edges on the Ag(111) Surface.

J Phys Chem Lett

January 2025

Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn 53115, Germany.

The carpet growth of alkali halide (AH) layers across step edges of substrates enables the growth of seamless and continuous large domains. Yet, information about how the AH layer adapts continuously to the height difference between the terraces on the two sides of a step is only described by continuum models, which do not give details of the ionic displacements. Here, we present a first study of thin epitaxial KCl(100) layers grown on the Ag(111) surface by scanning tunneling microscopy that provides atomistic details for the first time.

View Article and Find Full Text PDF

We introduce a novel control mode for Scanning Tunneling Microscope (STM) that leverages di/dz feedback. By superimposing a high-frequency sinusoidal modulation on the control signal, we extract the amplitude of the resulting tunneling current to obtain a di/dz measurement as the tip is scanned over the surface. A feedback control loop is then closed to maintain a constant di/dz, enhancing the sensitivity of the tip to subtle surface variations throughout a scan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!