Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model. Systemic Tulp4 deficiency exerted a strong impact on embryonic development in both Tulp4 homozygous null (Tulp4-/-) and heterozygous (Tulp4+/-) knockout mice, the former exhibiting perinatal lethality. High-resolution episcopic microscopy (HREM) of day 14.5 embryos allowed for the identification of multiple developmental defects in Tulp4-/- mice, including severe heart defects. Moreover, in Tulp4+/- embryos HREM revealed abnormalities of several organ systems, which per se do not affect prenatal or postnatal survival. In adult Tulp4+/- mice, extensive examinations of hematopoietic and cardiovascular features, involving histopathological surveys of multiple tissues as well as blood counts and immunophenotyping, did not provide evidence for anomalies as observed in corresponding embryos. Finally, evaluating a potential obesity-related phenotype as reported for other TULP family members revealed a trend for increased body weight of Tulp4+/- mice. RESEARCH HIGHLIGHTS: To study the role of the TULP4 gene in vivo, we generated a Tulp4 knockout mouse model. Correlative analyses involving HREM revealed a strong impact of Tulp4 deficiency on murine embryonic development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.24476DOI Listing

Publication Analysis

Top Keywords

tulp4 deficiency
12
embryonic development
12
deficiency murine
8
murine embryonic
8
tulp4
8
role tulp4
8
vivo generated
8
generated tulp4
8
tulp4 knockout
8
knockout mouse
8

Similar Publications

Article Synopsis
  • Circular RNAs (circRNAs) are noncoding RNAs, and many have unknown biological functions due to challenges in studying them.
  • This study specifically investigated circTulp4, a circRNA found in the brain, by creating a mouse model that lacks circTulp4 while preserving normal mRNA and protein levels.
  • The findings show that circTulp4 is essential for proper brain function, influencing neurotransmission and responses to negative stimuli, highlighting the importance of circRNAs in neural regulation.
View Article and Find Full Text PDF

Genetically engineered mouse models have the potential to unravel fundamental biological processes and provide mechanistic insights into the pathogenesis of human diseases. We have previously observed that germline genetic variation at the TULP4 locus influences clinical characteristics in patients with myeloproliferative neoplasms. To elucidate the role of TULP4 in pathological and physiological processes in vivo, we generated a Tulp4 knockout mouse model.

View Article and Find Full Text PDF

Clinical presentation and genetic profiles of Chinese patients with velocardiofacial syndrome in a large referral centre.

J Genet

June 2019

Department of Oral and Cranio-maxillo facial Surgery, National Clinical Research Center for Oral Disease, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, People's Republic of China.

Diagnosis and treatment of velocardiofacial syndrome (VCFS) with variable genotypes and phenotypes are considered to be very complicated. Establishing an exact correlation between the phenotypes and genotypes of VCFS is still a challenging. In this paper, 88 Chinese VCFS patients were divided into five groups based on palatal anomalies and one or two of other four common phenotypes, and copy number variations (CNVs) were detected using multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH) and quantitative polymerase chain reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!