A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Boundary-bound reactions: Pattern formation with and without hydrodynamics. | LitMetric

Boundary-bound reactions: Pattern formation with and without hydrodynamics.

Phys Rev E

Department of Applied Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.

Published: November 2023

We study chemical pattern formation in a fluid between two flat plates and the effect of such patterns on the formation of convective cells. This patterning is made possible by assuming the plates are chemically reactive or release reagents into the fluid, both of which we model as chemical fluxes. We consider this as a specific example of boundary-bound reactions. In the absence of coupling with fluid flow, we show that the two-reagent system with nonlinear reactions admits chemical instabilities equivalent to diffusion-driven Turing instabilities. In the other extreme, when chemical fluxes at the two bounding plates are constant, diffusion-driven instabilities do not occur but hydrodynamic phenomena analogous to Rayleigh-Bénard convection are possible. Assuming we can influence the chemical fluxes along the domain and select suitable reaction systems, this presents a mechanism for the control of chemical and hydrodynamic instabilities and pattern formation. We study a generic class of models and find necessary conditions for a bifurcation to pattern formation. Afterwards, we present two examples derived from the Schnakenberg-Selkov reaction. Unlike the classical Rayleigh-Bénard instability, which requires a sufficiently large unstable density gradient, a chemohydrodynamic instability based on Turing-style pattern formation can emerge from a state that is uniform in density. We also find parameter combinations that result in the formation of convective cells whether gravity acts upwards or downwards relative to the reactive plate. The wave number of the cells and the direction of the flow at regions of high/low concentration depend on the orientation, hence, different patterns can be elicited by simply inverting the device. More generally, our results suggest methods for controlling pattern formation and convection by tuning reaction parameters. As a consequence, we can drive and alter fluid flow in a chamber without mechanical pumps by influencing the chemical instabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.055103DOI Listing

Publication Analysis

Top Keywords

pattern formation
24
chemical fluxes
12
boundary-bound reactions
8
formation
8
formation convective
8
convective cells
8
fluid flow
8
chemical instabilities
8
chemical
7
pattern
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!