Stability of sectored morphologies of polymer lamellae.

Phys Rev E

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.

Published: November 2023

When a solution of interpenetrating and entangled long flexible polymer chains is cooled to low enough temperatures, the chains crystallize into thin lamellae of nanoscopic thickness and microscopic lateral dimensions. Depending on the nature of the solvent and growth conditions, the lamellae exhibit several sectors that have differing growth kinetics and melting temperatures. Remarkably, these lamellae can spontaneously form tentlike morphology. The experimentally well-documented phenomenology of lamellar sectorization and tent formation has so far eluded a fundamental understanding of their origins. We present a theoretical model to explain this longstanding challenge and derive conditions for the relative stabilities of planar, sectored, and tent morphologies for polymer lamellae in terms of their elastic constants and interfacial tensions. While the present model offers an explanation of the origin of the spontaneous formation of sectored tentlike morphology as well as sectored planar morphology, in contrast to planar unsectored morphology, predictions are made for morphology transformations based on the materials properties of the polymeric lamellae.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.054501DOI Listing

Publication Analysis

Top Keywords

morphologies polymer
8
polymer lamellae
8
tentlike morphology
8
lamellae
6
morphology
5
stability sectored
4
sectored morphologies
4
lamellae solution
4
solution interpenetrating
4
interpenetrating entangled
4

Similar Publications

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.

View Article and Find Full Text PDF

Enantiomer-Dependent Supramolecular Antibacterial Therapy for Drug-Resistant Bacterial Keratitis.

Langmuir

January 2025

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.

Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.

View Article and Find Full Text PDF

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!