Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Undirected hyperbolic graph models have been extensively used as models of scale-free small-world networks with high clustering coefficient. Here we presented a simple directed hyperbolic model where nodes randomly distributed on a hyperbolic disk are connected to a fixed number m of their nearest spatial neighbors. We introduce also a canonical version of this network (which we call "network with varied connection radius"), where maximal length of outgoing bond is space dependent and is determined by fixing the average out-degree to m. We study local bond length, in-degree, and reciprocity in these networks as a function of spacial coordinates of the nodes and show that the network has a distinct core-periphery structure. We show that for small densities of nodes the overall in-degree has a truncated power-law distribution. We demonstrate that reciprocity of the network can be regulated by adjusting an additional temperature-like parameter without changing other global properties of the network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.054310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!