We consider a quantum Otto cycle with a q-deformed quantum oscillator working substance and classical thermal baths. We investigate the influence of the quantum statistical deformation parameter q on the work and efficiency of the cycle. In usual quantum Otto cycle, a Hamiltonian parameter is varied during the quantum adiabatic stages while the quantum statistical character of the working substance remains fixed. We point out that even if the Hamiltonian parameters are not changing, work can be harvested by quantum statistical changes of the working substance. Work extraction from thermal resources using quantum statistical mutations of the working substance makes a quantum Otto cycle without any classical analog.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.054103DOI Listing

Publication Analysis

Top Keywords

working substance
20
quantum otto
16
quantum statistical
16
otto cycle
12
quantum
9
working
5
substance
5
powering quantum
4
otto
4
otto engines
4

Similar Publications

Extracellular polymeric substances (EPS) can effectively attenuate heavy metal mobility in aquatic ecosystems and reduce metal toxicity to cells. However, a systematic study of microalgae EPS responses and their adsorption behaviors, characteristics, and mechanisms under different heavy metal exposures has not been performed. In this study, EPS extracted from Chlamydomonas reinhardtii CC-125 was analyzed for compositional changes (monosaccharides and proteins) under Cd, Cu, Pb, and Zn treatments.

View Article and Find Full Text PDF

This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: As digestive health issues rise and interest in natural therapies grows, traditional herbs like Cassia Seed are gaining attention for their antioxidant, laxative, and digestive benefits.

Aim Of The Study: This study aimed to optimize the fermentation conditions of Cassia seed using microbial technology to enhance the content of anthraquinone compounds, thereby augmenting its pharmacological effects, particularly in promoting intestinal peristalsis and alleviating constipation.

Materials And Methods: Fermentation of Cassia Seed was conducted under controlled microbial conditions.

View Article and Find Full Text PDF

Changyanning tablet alleviates Crohn's disease by inhibiting GPX4-mediated ferroptosis.

J Ethnopharmacol

January 2025

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. Electronic address:

Ethnopharmacological Relevance: Changyanning tablets (CYN) are a marketed traditional Chinese medicine composed of Diijincao (Euphorbia humifusa Willd.), Jinmaoercao (Hedyotis chrysotricha (Palib.) Merr.

View Article and Find Full Text PDF

Effect of formulation composition on trastuzumab stability.

Int J Pharm

January 2025

Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States. Electronic address:

For monoclonal antibody drug products as for other biologics, while the innovator drug products first becomes commercially available, they are often followed by one or more biosimilar products. These biosimilars often differ from the innovator product, as well as from each other, in their formulation composition. However, the impact of the formulation composition on the stability of the active pharmaceutical ingredient subjected to different 'stresses' is still not understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!