At least two different approaches to define and solve statistical models for the analysis of economic systems exist: the typical, econometric one, interpreting the gravity model specification as the expected link weight of an arbitrary probability distribution, and the one rooted in statistical physics, constructing maximum-entropy distributions constrained to satisfy certain network properties. In a couple of recent companion papers, they have been successfully integrated within the framework induced by the constrained minimization of the Kullback-Leibler divergence: specifically, two broad classes of models have been devised, i.e., the integrated and conditional ones, defined by different, probabilistic rules to place links, load them with weights and turn them into proper, econometric prescriptions. Still, the recipes adopted by the two approaches to estimate the parameters entering into the definition of each model differ. In econometrics, a likelihood that decouples the binary and weighted parts of a model, treating a network as deterministic, is typically maximized; to restore its random character, two alternatives exist: either solving the likelihood maximization on each configuration of the ensemble and taking the average of the parameters afterwards or taking the average of the likelihood function and maximizing the latter one. The difference between these approaches lies in the order in which the operations of averaging and maximization are taken-a difference that is reminiscent of the quenched and annealed ways of averaging out the disorder in spin glasses. The results of the present contribution, devoted to comparing these recipes in the case of continuous, conditional network models, indicate that the annealed estimation recipe represents the best alternative to the deterministic one.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.054301DOI Listing

Publication Analysis

Top Keywords

quenched annealed
8
network models
8
deterministic quenched
4
annealed parameter
4
parameter estimation
4
estimation heterogeneous
4
network
4
heterogeneous network
4
models
4
models approaches
4

Similar Publications

Erbium-implanted silicon (Er:Si) holds promise for quantum networking, but the formation of multiple Er centers poses a challenge. We show that the cubic center (Er-C) has C or lower symmetry and propose all Er centers range between full Si- and full O-coordination. By co-implanting Si with Er and O (both 10cm) and increasing the thermal anneal quenching rate from ∼100 °C/s to ∼1000 °C/s, we shifted the dominant optically active center from ErO clusters to the Er-C center with mixed Si and O coordination.

View Article and Find Full Text PDF

This work investigated the CrNiMo stainless steel using laser selective melting (SLM) technology and explored the effect of the tempering temperature on the microstructure and properties. After the tempering treatment, the quenched martensite transformed from a metastable to steady state, and residual austenite was formed. The results indicated that the elongation of the transverse specimen showed an upward trend as the tempering temperature increased, while the elongation of the longitudinal specimen first increased and then decreased.

View Article and Find Full Text PDF

From molecular dynamics (MD) simulations of melt-quenching and thermal aging procedures in pure Ag, Cu, Ag-Cu binary alloys, and Cu-Zr binary alloys, we have identified two distinct amorphous phases for a metastable undercooled liquid: the homogeneous L-phase with low shear rigidity and the heterogenous G-phase with much higher shear rigidity and a heterogeneity length scale Λ. Here, we examine two-phase equilibration studies showing that the G-phase melts to form the L-phase above ~1,000 K, which then transforms to form the crystal (X) phase; however, below the melting point of the G-Phase (~990 K), the X- and G-phases do not transform into each other. We suggest the presence of a G-phase is likely responsible for embrittlement often observed in metallic glasses.

View Article and Find Full Text PDF

W-Mo-V high-speed steel (HSS) is a high-alloy high-carbon steel with a high content of carbon, tungsten, chromium, molybdenum, and vanadium components. This type of high-speed steel has excellent red hardness, wear resistance, and corrosion resistance. In this study, the alloying element ratios were adjusted based on commercial HSS powders.

View Article and Find Full Text PDF

The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!