Background And Purpose: Hemispatial neglect is characterized by a reduced awareness to stimuli on the contralateral side. Current literature suggesting that damage to the right parietal lobe and attention networks may cause hemispatial neglect is conflicting and can be improved by investigating a connectomic model of the "neglect system" and the anatomical specificity of regions involved in it.

Methods: A meta-analysis of voxel-based morphometry magnetic resonance imaging (MRI) studies of hemispatial neglect was used to identify regions associated with neglect. We applied parcellation schemes to these regions and performed diffusion spectrum imaging (DSI) tractography to determine their connectivity. By overlaying neglect areas and maps of the attention networks, we studied the relationship between them.

Results: The meta-analysis generated a list of 13 right hemisphere parcellations. These 13 neglect-related parcellations were predominantly linked by the superior longitudinal fasciculus (SLF) throughout a fronto-parietal-temporal network. We found that the dorsal and ventral attention networks showed partial overlap with the neglect system and included various other higher-order networks.

Conclusions: We provide an anatomically specific connectomic model of the neurobehavioral substrates underlying hemispatial neglect. Our model suggests a fronto-parietal-temporal network linked via the SLF supports the functions impaired in neglect and implicates various higher-order networks which are not limited to the attention networks.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.13176DOI Listing

Publication Analysis

Top Keywords

hemispatial neglect
20
attention networks
16
connectomic model
12
neglect
9
fronto-parietal-temporal network
8
hemispatial
5
networks
5
parcellation-based connectomic
4
model
4
model hemispatial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!