The use of green methods for ruthenium oxide nanoparticles (RuONPs) synthesis is gaining attention due to their eco-friendliness, cost-effectiveness, and availability. However, reports on the green synthesis and characterization of RuONPs are limited compared to other metal nanoparticles. The green synthesis and characterization of RuONPs using water extracts of Gunnera perpensa leaves as a reducing agent is reported in this study. The RuONPs were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Ultraviolet spectroscopy (UV-VIS). MTT assay was used to assess the cytotoxicity of the RuONPs against MCF7 and Vero cell lines. X-ray diffraction analysis results revealed the presence of crystalline and amorphous forms of RuONPs, while IR spectroscopy revealed the presence of functional groups associated with G. perpensa leaves. SEM showed that the RuONPs consisted predominantly of hexagonal and cuboid-like structures with a considerable degree of agglomeration being observed. The cell culture results indicated a low anticancer efficacy of RuONPs against MCF7 and Vero cell lines, suggesting that RuONPs may not be a good lead for anti-cancer drugs. This study highlights the potential of using green synthesis methods to produce RuONPs and their characterization, as well as their cytotoxicity against cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730706PMC
http://dx.doi.org/10.1038/s41598-023-50005-7DOI Listing

Publication Analysis

Top Keywords

green synthesis
16
synthesis characterization
12
ruonps
10
ruthenium oxide
8
oxide nanoparticles
8
gunnera perpensa
8
cancer cells
8
characterization ruonps
8
perpensa leaves
8
x-ray diffraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!