When individuals listen to speech, their neural activity phase-locks to the slow temporal rhythm, which is commonly referred to as "neural tracking". The neural tracking mechanism allows for the detection of an attended sound source in a multi-talker situation by decoding neural signals obtained by electroencephalography (EEG), known as auditory attention decoding (AAD). Neural tracking with AAD can be utilized as an objective measurement tool for diverse clinical contexts, and it has potential to be applied to neuro-steered hearing devices. To effectively utilize this technology, it is essential to enhance the accessibility of EEG experimental setup and analysis. The aim of the study was to develop a cost-efficient neural tracking system and validate the feasibility of neural tracking measurement by conducting an AAD task using an offline and real-time decoder model outside the soundproof environment. We devised a neural tracking system capable of conducting AAD experiments using an OpenBCI and Arduino board. Nine participants were recruited to assess the performance of the AAD using the developed system, which involved presenting competing speech signals in an experiment setting without soundproofing. As a result, the offline decoder model demonstrated an average performance of 90%, and real-time decoder model exhibited a performance of 78%. The present study demonstrates the feasibility of implementing neural tracking and AAD using cost-effective devices in a practical environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730561 | PMC |
http://dx.doi.org/10.1038/s41598-023-49990-6 | DOI Listing |
Alzheimers Dement
December 2024
Indiana University School of Medicine, Stark Neurosciences Research Institute, Department of Neurology, Indianapolis, IN, USA.
Background: Cerebral Amyloid Angiopathy (CAA) occurs at the intersection of Alzheimer's disease and vascular contributions to cognitive impairment and dementia (VCID). In the human brain it occurs when amyloid beta (Aβ) aggregates in small/medium-sized cerebral blood vessels, which contribute to hypoperfusion and cognitive decline by altering vascular function and integrity. The current study seeks to track the progression of CAA and associated neuroinflammation and glial cell changes in Tg2576 mice.
View Article and Find Full Text PDFBackground: Early detection and accurate forecasting of AD progression are crucial for timely intervention and management. This study leverages multi-modal data, including MRI scans, brain volumetrics, and clinical notes, utilizing Machine Learning (ML), Deep Learning (DL) and a range of ensemble methods to enhance the forecasting accuracy of Alzheimer's disease.
Method: We utilize the OASIS-3 longitudinal dataset, tracking 1,098 patients over 30 years.
Brief Bioinform
November 2024
Department of Bioinformatics and Systems Biology, MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, Hubei 430074, China.
Protein phosphorylation is dynamically and reversibly regulated by protein kinases and protein phosphatases, and plays an essential role in orchestrating a wide range of biological processes. Although a number of tools have been developed for predicting kinase-specific phosphorylation sites (p-sites), computational prediction of phosphatase-specific dephosphorylation sites remains to be a great challenge. In this study, we manually curated 4393 experimentally identified site-specific phosphatase-substrate relationships for 3463 dephosphorylation sites occurring on phosphoserine, phosphothreonine, and/or phosphotyrosine residues, from the literature and public databases.
View Article and Find Full Text PDFNat Commun
January 2025
Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.
During memory formation, the hippocampus is presumed to represent the content of stimuli, but how it does so is unknown. Using computational modelling and human single-neuron recordings, we show that the more precisely hippocampal spiking variability tracks the composite features of each individual stimulus, the better those stimuli are later remembered. We propose that moment-to-moment spiking variability may provide a new window into how the hippocampus constructs memories from the building blocks of our sensory world.
View Article and Find Full Text PDFNat Commun
January 2025
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!