Due to the high safety, flexibility, and excellent compatibility with lithium metals, composite solid-state electrolytes (CSEs) are the best candidates for next-generation lithium metal batteries, and the construction of fast and uniform Li transport is a critical part of the development of CSEs. In this paper, a stable three-dimensional metal-organic framework (MOF) network was obtained using polydopamine as a medium, and a high-performance CSE reinforced by the three-dimensional MOF network was constructed, which not only provides a continuous channel for Li transport but also restricts large anions and releases more mobile Li through a Lewis acid-base interaction. This strategy endows our CSEs with an ionic conductivity (7.1 × 10 S cm at 60 °C), a wide electrochemical window (5.0 V), and a higher Li transfer number (0.54). At the same time, the lithium symmetric batteries can be stably cycled for 2000 h at 0.1 mA cm, exhibiting excellent electrochemical stability. The LiFePO/Li cells have a high initial discharge specific capacity of 153.9 mAh g at 1C, with a capacity retention of 80% after 915 cycles. This paper proposes an approach for constructing three-dimensional MOF network-enhanced CSEs, which provides insights into the design and development of MOFs for the positive effects of high-performance CSEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c16268DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
composite solid-state
8
solid-state electrolytes
8
lithium metal
8
metal batteries
8
mof network
8
three-dimensional mof
8
cses
5
polydopamine-induced metal-organic
4
framework network-enhanced
4

Similar Publications

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Cellulose/covalent organic framework aerogel for efficient removal of Cr(VI): Performance and mechanism study.

Int J Biol Macromol

January 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, Yunnan, China. Electronic address:

Cellulose composites have exceptional qualities, particularly in removing heavy metal ions. Nevertheless, these materials' poor mechanical qualities and the restricted exposure of surface-active sites reduce the effectiveness of their removal. The removal efficiency of adsorbent materials largely depends on their macroscopic structural characteristics.

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!