Identification of methane cycling pathways in Quaternary alluvial-lacustrine aquifers using multiple isotope and microbial indicators.

Water Res

MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430078, China.

Published: February 2024

AI Article Synopsis

Article Abstract

Groundwater rich in dissolved methane is often overlooked in the global or regional carbon cycle. Considering the knowledge gap in understanding the biogeochemical behavior of methane in shallow aquifers, particularly those in humid alluvial-lacustrine plains with high organic carbon content, we investigated methane sources and cycling pathways in groundwater systems at the central Yangtze River basins. Composition of multiple stable isotopes (H/O in water, C in dissolved inorganic carbon, C/H in methane, and C in carbon dioxide) was combined with the characteristics of microbes and dissolved organic matter (DOM) in the study. The results revealed significant concentrations of biogenic methane reaching up to 13.05 mg/L in anaerobic groundwater environments with abundant organic matter. Different pathways for methane cycling (methanogenic CO-reduction and acetate-fermentation, and methane oxidation) were identified. CO-reduction dominated acetate-fermentation in the two methanogenic pathways primarily associated with humic DOM, while methane oxidation was more closely associated with microbially derived DOM. The abundance of obligate CO-reduction microorganisms (Methanobacterium and Methanoregula) was higher in samples with substantial CO-reduction, as indicated by isotopic composition. The obligate acetate-fermentation microorganism (Methanosaeta) was more abundant in samples exhibiting evident acetate-fermentation. Additionally, a high abundance of Candidatus Methanoperedens was identified in samples with apparent methane oxidation. Comparing our findings with those in other areas, we found that various factors, such as groundwater temperature, DOM abundance and types, and hydrogeological conditions, may lead to differences in groundwater methane cycling. This study offered a new perspective and understanding of methane cycling in worldwide shallow alluvial-lacustrine aquifer systems without geothermal disturbance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.121027DOI Listing

Publication Analysis

Top Keywords

methane cycling
16
methane oxidation
12
methane
11
cycling pathways
8
organic matter
8
dom abundance
8
cycling
5
groundwater
5
identification methane
4
pathways
4

Similar Publications

Roles and opportunities of quorum sensing in natural and engineered anaerobic digestion systems.

Water Res

January 2025

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:

Anaerobic digestion (AD) is a biological process in which anaerobic microorganisms convert organic matter into methane-rich gas, contributing to the cycling of carbon and other nutrients. Quorum sensing (QS), a microbial communication mechanism, plays a critical role in regulating population-level behaviors within AD systems. This review systematically examines the roles and applications of QS in AD, emphasizing its importance in enhancing process efficiency.

View Article and Find Full Text PDF

Advancing Food Security with Farmed Edible Insects: Economic, Social, and Environmental Aspects.

Insects

January 2025

Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA.

Farmed edible insects are considered a potential resource to help address food security concerns toward the year 2050. The sustainability (e.g.

View Article and Find Full Text PDF

A Comparison of Rice Root Microbial Dynamics in Organic and Conventional Paddy Fields.

Microorganisms

December 2024

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

The assembly of plant root microbiomes is a dynamic process. Understanding the roles of root-associated microbiomes in rice development requires dissecting their assembly throughout the rice life cycle under diverse environments and exploring correlations with soil properties and rice physiology. In this study, we performed amplicon sequencing targeting fungal ITS and the bacterial 16S rRNA gene to characterize and compare bacterial and fungal community dynamics of the rice root endosphere and soil in organic and conventional paddy fields.

View Article and Find Full Text PDF

Thawing Arctic permafrost can induce hydrologic change and alter redox conditions, shifting the balance of soil organic matter (SOM) decomposition. There remains uncertainty about how soil saturation and redox transitions impact dissolved and gas phase carbon fluxes, and efforts to link hydrobiogeochemical processes to ecosystem-scale models are limited. This study evaluates SOM decomposition of Arctic tundra soils using column experiments, water chemistry measurements, microbial community analysis, and a PFLOTRAN reactive transport model.

View Article and Find Full Text PDF

Suppressing Jahn-Teller distortion of MnO via B-Ni dual single-atoms integration for methane catalytic combustion.

Nat Commun

January 2025

School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China.

Precisely managing electron transfer pathways throughout the catalytic reaction is paramount for bolstering both the efficacy and endurance of catalysts, offering a pivotal solution to addressing concerns surrounding host structure destabilization and cycling life degradation. This paper describes the integration of B-Ni dual single-atoms within MnO channels to serve as an electronic reservoir to direct the electron transfer route during methane catalytic combustion. Comprehensive analysis discovers that B atoms weaken the interaction between O and Mn atoms by forming bonds with lattice oxygen atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!