Glycans are complex structures that require MS/MS for detailed structural elucidation. Incorporating metals can provide more structural information by inhibiting glycosidic cleavage and enhancing cross-ring fragmentation. A direct analysis was performed using lithium doping and IR-MALDESI to induce cross-ring fragmentation of glycans. The protonated and lithiated versions of the two glycans were isolated and subjected to HCD. For protonated glycans, only glycosidic cleavages were observed. Using lithium doping, MS/MS consisted of abundant cross-ring fragments. Seventeen cross-ring fragments were detected across both glycans using lithium-doped ESI. This is the first incorporation of metal doping in IR-MALDESI to achieve cross-ring fragments in MS/MS analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.3c00283 | DOI Listing |
J Phys Chem A
November 2024
Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan.
Characterization of carbohydrate structures using mass spectrometry is a challenging task. Understanding the dissociation mechanisms of carbohydrates in the gas phase is crucial for characterizing these structures through tandem mass spectrometry. In this study, we investigated the collision-induced dissociation (CID) of glucose, galactose, and mannose in their linear forms, as well as the linear forms of hexose at the reducing end of 1-6 linked disaccharides, using quantum chemistry calculations and tandem mass spectrometry.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
December 2024
Institute of Chemistry, University of Potsdam, Potsdam, Germany.
Rationale: The 1, 2-unsaturated derivatives of (1-4) linked disaccharides serve as versatile building blocks for synthesizing biologically active compounds. Distinguishing between four pairs of stereoisomers in mixtures presents a challenging task. In this study, disaccharide derivatives are analyzed as alkali metal adducts using electrospray ionization tandem mass spectrometry (ESI-MS/MS), both as individual compounds and in mixtures by ion mobility mass spectrometry (IMS).
View Article and Find Full Text PDFAnal Chem
January 2024
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2024
FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
Glycans are complex structures that require MS/MS for detailed structural elucidation. Incorporating metals can provide more structural information by inhibiting glycosidic cleavage and enhancing cross-ring fragmentation. A direct analysis was performed using lithium doping and IR-MALDESI to induce cross-ring fragmentation of glycans.
View Article and Find Full Text PDFChem Sci
June 2023
Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine Boston MA 02118 USA
Comprehensive glycan sequencing remains an elusive goal due to the structural diversity and complexity of glycans. Present strategies employing collision-induced dissociation (CID) and higher energy collisional dissociation (HCD)-based multi-stage tandem mass spectrometry (MS) or MS/MS combined with sequential exoglycosidase digestions are inherently low-throughput and difficult to automate. Compared to CID and HCD, electron transfer dissociation (ETD) and electron capture dissociation (ECD) each generate more cross-ring cleavages informative about linkage positions, but electronic excitation dissociation (EED) exceeds the information content of all other methods and is also applicable to analysis of singly charged precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!