Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure. These geometrically encoded magnetic sensors (GEMS) enable MRI-based sensing via environmentally induced changes to their geometry and their corresponding RF resonance. Previously, GEMS have been made using thin-film lithography techniques in a cleanroom environment. While these approaches offer precise control of the microstructure, they can be a limitation for researchers who do not have cleanroom access or microfabrication expertise. Here, an alternative approach for GEMS fabrication based on soft lithography is introduced. The fabrication scheme uses cheap, accessible materials and simple chemistry to produce shaped magnetic hydrogel microparticles with multispectral MRI contrast properties. The microparticles can be used as sensors by fabricating them out of shape-reconfigurable, "smart" hydrogels. The change in shape causes a corresponding shift in the resonance of the GEMS, producing an MRI-addressable readout of the microenvironment. Proof-of-principle experiments showing a multispectral response to pH change with cylindrical shell-shaped magnetogel GEMS are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.3c01373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!