Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we present an in-depth characterization of a diamond-like carbon (DLC) film, using a range of techniques to understand the structure and chemistry of the film both in the interior and particularly at the DLC/air surface and DLC/liquid interface. The DLC film is found to be a combination of sp and sp carbon, with significant oxygen present at the surface. The oxygen seems to be present as OH groups, making the DLC somewhat hydrophilic. Quartz-Crystal Microbalance (QCM) isotherms and complementary neutron reflectivity data indicate significant adsorption of a model additive, bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) surfactant, onto the DLC from water solutions and indicate the adsorbed film is a bilayer. This initial study of the structure and composition of a model surfactant is intended to give a clearer insight into how DLC and additives function as antiwear systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786025 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c01438 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!