A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stable SERS Detection of Lactobacillus fermentum Using Optical Tweezers in a Microfluidic Environment. | LitMetric

Stable SERS Detection of Lactobacillus fermentum Using Optical Tweezers in a Microfluidic Environment.

Anal Chem

Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China.

Published: January 2024

Rapid identification of fermented lactic acid bacteria has long been a challenge in the brewing industry. This study combined label-free surface-enhanced Raman scattering (SERS) and optical tweezer technology to construct a test platform within a microfluidic environment. Six kinds of lactic acid bacteria common in industry were tested to prove the stability of the SERS spectra. The results demonstrated that the utilization of optical tweezers to securely hold the bacteria significantly enhanced the stability of the SERS spectra. Furthermore, SVM and XGBoost machine learning algorithms were utilized to analyze the obtained Raman spectra for identification, and the identification accuracies exceeded 95% for all tested lactic acid bacteria. The findings of this study highlight the crucial role of optical tweezers in improving the stability of SERS spectra by capturing bacteria in a microfluidic environment, prove that this technology could be used in the rapid identification of lactic acid bacteria, and show great significance in expanding the applicability of the SERS technique for other bacterial testing purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c03852DOI Listing

Publication Analysis

Top Keywords

lactic acid
16
acid bacteria
16
optical tweezers
12
microfluidic environment
12
stability sers
12
sers spectra
12
rapid identification
8
bacteria
6
sers
5
stable sers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!