AI Article Synopsis

  • Neonates with congenital diaphragmatic hernia (CDH) often need cardiopulmonary bypass and anticoagulation therapy, but previous studies showed that even low doses of heparin can hinder lung growth and function.
  • In an experiment on mice, heparin alone reduced lung endothelial cell proliferation and increased cell death, but the negative effects on proliferation could be mitigated with direct thrombin inhibitors (DTIs) like bivalirudin and argatroban.
  • Despite these promising findings in vitro, the study concluded that DTIs did not sufficiently counteract the decreased lung growth associated with low-dose heparin in vivo, highlighting the need for clinical research on the combined effects of heparin and DTIs in

Article Abstract

Neonates with congenital diaphragmatic hernia (CDH) frequently require cardiopulmonary bypass and systemic anticoagulation. We previously demonstrated that even subtherapeutic heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). The direct thrombin inhibitors (DTIs) bivalirudin and argatroban preserved growth in this model. Although DTIs are increasingly used for systemic anticoagulation clinically, patients with CDH may still receive heparin. In this experiment, lung endothelial cell proliferation was assessed following treatment with heparin-alone or mixed with increasing concentrations of bivalirudin or argatroban. The effects of subtherapeutic heparin with or without DTIs in the CLG model were also investigated. C57BL/6J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were preloaded with normal saline, bivalirudin, or argatroban; treated animals received daily intraperitoneal low-dose heparin. In vitro, heparin-alone decreased endothelial cell proliferation and increased apoptosis. The effect of heparin on proliferation, but not apoptosis, was reversed by the addition of bivalirudin and argatroban. In vivo, low-dose heparin decreased lung volume compared with saline-treated controls. All three groups that received heparin demonstrated decreased lung function on pulmonary function testing and impaired exercise performance on treadmill tolerance testing. These findings correlated with decreases in alveolarization, vascularization, angiogenic signaling, and gene expression in the heparin-exposed groups. Together, these data suggest that bivalirudin and argatroban fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of low-dose heparin with DTIs on CDH outcomes are warranted. Infants with pulmonary hypoplasia frequently require cardiopulmonary bypass and systemic anticoagulation. We investigate the effects of simultaneous exposure to heparin and direct thrombin inhibitors (DTIs) on lung growth and pulmonary function in a murine model of compensatory lung growth (CGL). Our data suggest that DTIs fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of heparin with DTIs on clinical outcomes are thus warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11280676PMC
http://dx.doi.org/10.1152/ajplung.00096.2023DOI Listing

Publication Analysis

Top Keywords

lung growth
28
bivalirudin argatroban
20
growth function
16
subtherapeutic heparin
16
heparin
13
direct thrombin
12
thrombin inhibitors
12
fail reverse
12
heparin lung
12
function murine
12

Similar Publications

The 1.7 kb DRAIC long noncoding RNA inhibits tumor growth, inhibits cancer cell invasion, migration, colony formation and interacts with IKK (IκB kinase) subunits, inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB, to suppress the activation of NF-κB. Whether these activities are all linked is unclear.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Introduction: Non-small cell lung cancer (NSCLC) constitutes approximately 80-85% of cancer-related fatalities globally, and direct and indirect comparisons of various therapies for NSCLC are lacking. In this study, we aimed to compare the efficacy and safety of immune checkpoint inhibitors (ICIs) in patients with epidermal growth factor receptor (EGFR)-mutated NSCLC.

Methods: The electronic databases were systematically searched from inception until March 18, 2024.

View Article and Find Full Text PDF

Brain metastasis has emerged as a significant challenge in the comprehensive management of patients with non-small cell lung cancer (NSCLC), particularly in those harboring driver gene mutations. Traditional treatments such as radiotherapy and surgery offer limited clinical benefits and are often accompanied by cognitive dysfunction and a decline in quality of life. In recent years, novel small molecule tyrosine kinase inhibitors targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), and other pathways have been developed, effectively penetrating the blood-brain barrier while enhancing intracranial drug concentrations and improving patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!