Under depleted external phosphate (Pi), many plant species adapt to this stress by initiating downstream signaling cascades. In plants, the vascular system delivers nutrients and signaling agents to control physiological and developmental processes. Currently, limited information is available regarding the direct role of phloem-borne long-distance signals in plant growth and development under Pi stress conditions. Here, we report on the identification and characterization of a cucumber protein, Cucumis sativus Phloem Phosphate Stress-Repressed 1 (CsPPSR1), whose level in the phloem translocation stream rapidly responds to imposed Pi-limiting conditions. CsPPSR1 degradation is mediated by the 26S proteasome; under Pi-sufficient conditions, CsPPSR1 is stabilized by its phosphorylation within the sieve tube system through the action of CsPPSR1 kinase. Further, we discovered that CsPPSR1 kinase was susceptible to Pi starvation-induced degradation in the sieve tube system. Our findings offer insight into a molecular mechanism underlying the response of phloem-borne proteins to Pi-limited stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erad504 | DOI Listing |
Physiol Plant
January 2025
Department of Horticulture, University of Georgia, Athens, GA, USA.
Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD).
View Article and Find Full Text PDFShokuhin Eiseigaku Zasshi
January 2025
Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture.
Some microorganisms, including lactic acid bacteria (LAB), can bind to mycotoxins. Its binding ability is useful for mycotoxin mitigation. Conventionally, the binding assay for this ability of microorganisms to mycotoxins has been performed by the so-called in vitro assay.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. Electronic address:
The SUPERMAN (SUP) proteins, which belong to the single C2H2 zinc finger proteins (ZFP) subclass, participate in various aspects of gene regulation in plant morphogenesis and stress response, but their role in melon (Cucumis melo) is still largely unknown. We identified a total of 28 CmSUP genes in the melon genome, all containing QALGGH conserved domain. Collinearity analysis showed that melon had several homologous gene pairs with Arabidopsis and tomato, indicating the gene duplication events during the evolution.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey.
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, from cucumber and analyzed its role in the plant's defense against the feeding of . is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!