The biaxial method consists of the utilization of orthogonal electric fields in single-element piezoceramics both in transmission and reception. This study demonstrates the application of the biaxial method to broadband transducers. We developed a three-element biaxial transducer array to demonstrate the feasibility of biaxial method in imaging applications. Finite element analysis was used to model the response of a single transducer element. An electric characterization was performed at each transducer element to determine their driving frequency. Each transducer was driven at 6.25 MHz and tested in different phases to determine the phase that produced the maximum pressure amplitude and shortest pulsewidth. Both simulations and experimental results showed that the acoustic pressure and half-pulsewidth followed a sinusoidal response as a function of the difference in phase applied to the lateral electrodes, as it has been described in our previous work. An imaging test was performed by placing a 0.36-mm diameter nylon wire 20 mm away from the transducer while driving and receiving each element with different combinations of conventional and biaxial driving. By applying a biaxial rephasing at the receiving electrodes during the data analysis, we obtained a maximum reduction in the axial resolution from 4.6 to 1.3 mm and signal-to-noise ratio (SNR) improvements from 15.2 to 24.4 dB, when compared to conventional driving.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2023.3345249 | DOI Listing |
BMC Oral Health
January 2025
Department of Fixed Prosthodontics - Faculty of Dentistry, Ain Shams University, Organization of African Unity, St, El-Qobba Bridge, El Weili, Cairo Governorate, Egypt.
Background: Home bleaching is a promising option for addressing discolored teeth conservatively. However, its impact on the physical and mechanical properties of indirect restorations remains unknown. This study provides comparative insights into the material responses to aesthetic treatments by assessing the effects of home bleaching agents on two hybrid ceramics: VITA ENAMIC and Grandio Blocs.
View Article and Find Full Text PDFJ Prosthodont
January 2025
Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Lagoa Nova, Natal, Brazil.
Purpose: To assess the impact of staining and multiple firings on the mechanical, optical, and surface characteristics of zirconia-containing lithium silicate ceramics (ZLS).
Materials And Methods: Ninety ZLS discs (Suprinity, VITA Zahnfabrick) were divided according to the "Number of firings" protocol: Ctr-control, no characterization; SC-single firing cycle (for characterization, crystallization and staining simultaneously); and DC-double firing cycle (crystallization firing cycle was performed separately from the staining firing). Extrinsic pigmentation was performed to replicate the characterization of a monolithic restoration.
Braz Oral Res
January 2025
Universidade Estadual Paulista - Unesp, Institute of Science and Technology, Department of Dental Materials and Prosthodontics, São José dos Campos, SP, Brazil.
This study evaluated the survival probabilities of two lithia-based glass-ceramics after final crystallization in a microwave furnace using conventional crystallization as a reference. Disc-shaped samples of a lithium silicate (LS, Celtra Duo) and a lithium disilicate (LD, e.max CAD) were prepared and divided into two groups according to the crystallization method (n = 30): microwave (M) or conventional furnaces (C).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
With the rapid advancements in asymmetric catalysis, there is a growing need for the asymmetric selective synthesis of complex and diverse molecules with chiral axes. Axially chiral molecules are not only present in natural products and drugs but also in specialized chiral ligands and catalysts. The catalytic asymmetric synthesis of axially chiral molecules has garnered significant attention within the chemical community.
View Article and Find Full Text PDFLens tension is essential for accommodative vision but remains challenging to measure with precision. Here, we present an optical coherence elastography (OCE) technique that quantifies both the tension and elastic modulus of lens tissue and capsule. This method derives mechanical parameters from surface wave dispersion across a critical frequency range of 1-30 kHz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!