In this article, we proposed a novel fault-tolerant control scheme for quadrotor unmanned aerial vehicles (UAVs) based on spiking neural networks (SNNs), which leverages the inherent features of neural network computing to significantly enhance the reliability and robustness of UAV flight control. Traditional control methods are known to be inadequate in dealing with complex and real-time sensor data, which results in poor performance and reduced robustness in fault-tolerant control. In contrast, the temporal processing, parallelism, and nonlinear capacity of SNNs enable the fault-tolerant control scheme to process vast amounts of sensory data with the ability to accurately identify and respond to faults. Furthermore, SNNs can learn and adjust to new environments and fault conditions, providing effective and adaptive flight control. The proposed SNN-based fault-tolerant control scheme demonstrates significant improvements in control accuracy and robustness compared with conventional methods, indicating its potential applicability and suitability for a range of UAV flight control scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3342078DOI Listing

Publication Analysis

Top Keywords

fault-tolerant control
16
control scheme
12
flight control
12
control
10
unmanned aerial
8
aerial vehicles
8
uav flight
8
fault-tolerant
5
fault-tolerant attitude
4
attitude tracking
4

Similar Publications

The selective number-dependent arbitrary phase gates form a powerful class of quantum gates, imparting arbitrarily chosen phases to the Fock states of a cavity. However, for short pulses, coherent errors limit the performance. Here, we demonstrate in theory and experiment that such errors can be completely suppressed, provided that the pulse times exceed a specific limit.

View Article and Find Full Text PDF

High-rate quantum error correcting (QEC) codes with moderate overheads in qubit number and control complexity are highly desirable for achieving fault-tolerant quantum computing. Recently, quantum error correction has experienced significant progress both in code development and experimental realizations, with neutral atom qubit architecture rapidly establishing itself as a leading platform in the field. Scalable quantum computing will require processing with QEC codes that have low qubit overhead and large error suppression, and while such codes do exist, they involve a degree of non-locality that has yet to be integrated into experimental platforms.

View Article and Find Full Text PDF

A fault tolerant CSA in QCA technology for IoT devices.

Sci Rep

January 2025

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.

View Article and Find Full Text PDF

Event-triggered adaptive compensation control for stochastic nonlinear systems with multiple failures: An improved switching threshold strategy.

ISA Trans

January 2025

School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China; Qingdao Innovation Center of Artificial Intelligence Ocean Technology, Qingdao 266061, China; The Research Institute for Mathematics and Interdisciplinary Sciences, Qingdao University of Science and Technology, Qingdao 266061, China. Electronic address:

This paper considers the event-triggered adaptive fault-tolerant control (FTC) problem for a class of stochastic nonlinear systems suffering from finite number of actuator failures and abrupt system external failure. Unlike existing event-triggered mechanisms (ETMs), this paper proposes an improved switching threshold mechanism (STM) that effectively addresses the potential system security hazards caused by large signal impulses when both the magnitude size of the controller and its rate of change are too large, while also saving energy consumption. Especially, when the occurrence of both actuator failure and system external failure may lead to over-change rate of the controller, by using the multi-dimensional Taylor network (MTN) approximation technique, the adaptive fault-tolerant control scheme designed based on the improved STM not only has lower resource consumption, but also indirectly improves the control performance of the system by ensuring the system security operation.

View Article and Find Full Text PDF

This paper explores a novel challenge regarding bidirectional Automated Guided Vehicles (AGVs): supervisory control amidst potential sensor faults. The proposed approach uses an event-based control architecture, guided by Supervisory Control Theory (SCT), to achieve non-blocking routing of AGVs. Unlike most routing approaches assuming full event observability, this paper investigates scenarios where events might become unobservable due to sensor faults or disturbances, which may affect the supervisor efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!