Exploiting the interplay of anisotropic diamagnetic susceptibility of liquid crystalline monomers and site selective photopolymerization enables the fabrication of 3D freeforms with highly refined microstructures. Utilizing chain transfer agents in the mesogenic inks presents a pathway for broadly tuning the mechanical properties of liquid crystalline polymers and their response to stimuli. In particular, the combination of 1,4-benzenedimethanethiol and tetrabromomethane is shown to enable voxelated blueprinting of molecular order, while allowing for a modulation of the crosslink density and the mechanical properties. The formulation of these monomers allows for the resolution of the voxels to approach the limits set by the coherence lengths defined by the anchoring from surfaces. These compositions demonstrate the expected thermotropic responses while allowing for their functionalization with photochromic switches to elicit photomechanical responses. Actuation strains are shown to outstrip that accomplished with prior systems that did not access chain transfer agents to modulate the structure of the macromolecular network. Test cases of this system are shown to create freeform actuators that exploit the refined director patterns during high-resolution printing. These include topological defects, hierarchically-structured light responsive grippers, and biomimetic flyers whose flight dynamics can be actively modulated irradiation with light.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3sm01374jDOI Listing

Publication Analysis

Top Keywords

liquid crystalline
12
blueprinting molecular
8
crystalline polymers
8
chain transfer
8
transfer agents
8
mechanical properties
8
three-dimensional blueprinting
4
molecular patterns
4
patterns liquid
4
polymers exploiting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!