Towards Full Thickness Small Intestinal Models: Incorporation of Stromal Cells.

Tissue Eng Regen Med

Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.

Published: April 2024

Introduction: Since small intestine is one of the major barriers of the human body, there is a need to develop reliable in vitro human small intestinal models. These models should incorporate both the epithelial and lamina propria compartments and have similar barrier properties compared to that of the human tissue. These properties are essential for various applications, such as studying cell-cell interaction, intestinal diseases and testing permeability and metabolism of drugs and other compounds. The small intestinal lamina propria contains multiple stromal cell populations with several important functions, such as secretion of extracellular matrix proteins and soluble mediators. In addition, stromal cells influence the intestinal epithelial barrier, support the intestinal stem cell niche and interact with immune cells.

Methods: In this review, we provide an extensive overview on the different types of lamina propria stromal cells found in small intestine and describe a combination of molecular markers that can be used to distinguish each different stromal cell type. We focus on studies that incorporated stromal cells into human representative small intestine models cultured on transwells.

Results And Conclusion: These models display enhanced epithelial morphology, increased cell proliferation and human-like barrier properties, such as low transepithelial electrical resistance (TEER) and intermediate permeability, thus better mimicking the native human small intestine than models only consisting of an epithelium which generally show high TEER and low permeability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987430PMC
http://dx.doi.org/10.1007/s13770-023-00600-6DOI Listing

Publication Analysis

Top Keywords

stromal cells
16
small intestine
16
small intestinal
12
lamina propria
12
intestinal models
8
human small
8
barrier properties
8
stromal cell
8
intestine models
8
small
7

Similar Publications

Non-coding RNAs secreted by renal cancer include piR_004153 that promotes migration of mesenchymal stromal cells.

Cell Commun Signal

January 2025

Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.

Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.

View Article and Find Full Text PDF

Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!