Introduction: Since small intestine is one of the major barriers of the human body, there is a need to develop reliable in vitro human small intestinal models. These models should incorporate both the epithelial and lamina propria compartments and have similar barrier properties compared to that of the human tissue. These properties are essential for various applications, such as studying cell-cell interaction, intestinal diseases and testing permeability and metabolism of drugs and other compounds. The small intestinal lamina propria contains multiple stromal cell populations with several important functions, such as secretion of extracellular matrix proteins and soluble mediators. In addition, stromal cells influence the intestinal epithelial barrier, support the intestinal stem cell niche and interact with immune cells.
Methods: In this review, we provide an extensive overview on the different types of lamina propria stromal cells found in small intestine and describe a combination of molecular markers that can be used to distinguish each different stromal cell type. We focus on studies that incorporated stromal cells into human representative small intestine models cultured on transwells.
Results And Conclusion: These models display enhanced epithelial morphology, increased cell proliferation and human-like barrier properties, such as low transepithelial electrical resistance (TEER) and intermediate permeability, thus better mimicking the native human small intestine than models only consisting of an epithelium which generally show high TEER and low permeability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10987430 | PMC |
http://dx.doi.org/10.1007/s13770-023-00600-6 | DOI Listing |
Cell Commun Signal
January 2025
Centre of Postgraduate Medical Education, Centre of Translation Research, Department of Biochemistry and Molecular Biology, ul. Marymoncka 99/103, Warsaw, 01-813, Poland.
Background: Renal cell cancer (RCC) is the most common and highly malignant subtype of kidney cancer. Mesenchymal stromal cells (MSCs) are components of tumor microenvironment (TME) that influence RCC progression. The impact of RCC-secreted small non-coding RNAs (sncRNAs) on TME is largely underexplored.
View Article and Find Full Text PDFToxicol Sci
January 2025
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07103.
Phthalates are known endocrine disrupting chemicals and ovarian toxicants that are used widely in consumer products. Phthalates have been shown to exert ovarian toxicity on multiple endpoints, altering transcription of genes responsible for normal ovarian function. However, the molecular mechanisms by which phthalates act on the ovary are not well understood.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, No. 126 Sendai Street, Nanguan District, Changchun, 130031, China.
Imatinib resistance is a major obstacle to the successful treatment of gastrointestinal stromal tumors (GIST). Long non-coding RNAs (LncRNAs) have been identified as important regulatory factors in chemotherapy resistance. This study aimed to identify key lncRNAs involved in imatinib resistance of GISTs.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Biobizkaia Health Research Institute, 48903, Barakaldo, Spain.
Clear cell renal cell carcinoma (ccRCC) is one of the most challenging neoplasms because of its phenotypic variability and intratumoral heterogeneity. Because of its variability, ccRCC is a good test bench for the application of new technological approaches to unveiling its intricacies. Multiplex immunofluorescence (mIF) is an emerging method that enables the simultaneous and detailed assessment of tumor and stromal cell subpopulations in a single tissue section.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!