Recent Advances in RNA mA Modification in Solid Tumors and Tumor Immunity.

Cancer Treat Res

Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.

Published: December 2023

An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (mA), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of mA mRNA modification in cancer with a focus on solid tumor biology and immunity. mA RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. mA RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of mA RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of mA RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-45654-1_4DOI Listing

Publication Analysis

Top Keywords

rna methylation
12
solid tumors
8
rna molecules
8
solid tumor
8
rna
7
advances rna
4
modification
4
rna modification
4
solid
4
modification solid
4

Similar Publications

Changes in DNA methylation and subsequent alterations in gene expression have opened a new direction in research related to the pathogenesis of peripheral neuropathic pain (PNP). This study aimed to reveal epigenetic perturbations underlying DNA methylation in the dorsal root ganglion (DRG) of rats with peripheral nerve injury in response to prior exercise and identify potential target genes involved. Male Sprague-Dawley rats were divided into three groups, namely, chronic constriction injury (CCI) of the sciatic nerve, CCI with prior 6-week swimming training (CCI_Ex), and sham operated (Sham).

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.

View Article and Find Full Text PDF

Most m5C modifications in mammalian mRNAs are nonadaptive.

Mol Biol Evol

January 2025

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.

5-methylation (m5C) on mRNA molecules is a prevalent internal posttranscriptional modification in eukaryotes. Although m5C modification has been reported to regulate some biological processes, it is unknown whether most mRNA m5C modifications are functional. To address this question, we analyzed the genome-wide evolutionary characteristics of m5C modifications in protein-coding genes of humans and mice.

View Article and Find Full Text PDF

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!