While two-dimensional conjugated polymers (2DCPs) have shown great promise in two-photon luminescence (TPL) bioimaging, 2DCP-based TPL imaging agents that can be excited in the second near-infrared window (NIR-II) have rarely been reported so far. Herein, we report two 2DCPs including and , with octupolar olefin-linked structures for NIR-II-excited bioimaging. The 2DCPs are customized with the fully conjugated donor-acceptor (D-A) linkage and aggregation-induced emission (AIE) active building blocks, leading to good two-photon absorption into the NIR-II window with a 2PACS of ∼64.0 GM per choromophore for both 2DCPs. Moreover, powders can be exfoliated into water-dispersible nanoplates with a Pluronic F-127 surfactant-assisted temperature-swing method, accompanied by both a drastic reduction of 2PACS throughout the range of 780-1080 nm and a sharp increase of photoluminescence quantum yield to 33.3%. The nanoplates are subsequently proven to be capable of assisting in visualizing mouse brain vasculatures with a penetration depth of 421 μm and good contrast , albeit that only 19% of previous 2PACS at 1040 nm is preserved. This work not only provides important insights on how to construct NIR-II excitable 2DCPs for TPL bioimaging but also how to investigate the exfoliation-photophysical property correlation of 2DCPs, which should aid in future research on developing highly efficient TPL bioimaging agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c13446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!