Brain imaging-derived phenotypes have been suggested to be associated with amyotrophic lateral sclerosis in observational studies, but whether these associations are causal remains unclear. We aimed to assess the potential bidirectional causal associations between imaging-derived phenotypes and amyotrophic lateral sclerosis using bidirectional 2-sample Mendelian randomization analyses. Summary statistics for 469 imaging-derived phenotypes (33,224 individuals) and amyotrophic lateral sclerosis (20,806 cases and 59,804 controls) were obtained from 2 large-scale genome-wide association studies of European ancestry. We used the inverse-variance weighted Mendelian randomization method in the main analysis to assess the bidirectional associations between imaging-derived phenotypes and amyotrophic lateral sclerosis, followed by several sensitivity analyses for robustness validation. In the forward Mendelian randomization analyses, we found that genetically determined high orientation dispersion index in the right cerebral peduncle was associated with the increased risk of amyotrophic lateral sclerosis (odds ratio = 1.30, 95% confidence interval = 1.16-1.45, P = 2.26 × 10-6). In addition, the reverse Mendelian randomization analysis indicated that amyotrophic lateral sclerosis had no effect on 469 imaging-derived phenotypes. Mendelian randomization-Egger regression analysis showed no directional pleiotropy for the association between high orientation dispersion index in the right cerebral peduncle and amyotrophic lateral sclerosis, and sensitivity analyses with different Mendelian randomization models further confirmed these findings. The present systematic bidirectional Mendelian randomization analysis showed that high orientation dispersion index in the right cerebral peduncle might be the potential causal mediator of amyotrophic lateral sclerosis, which may provide predictive guidance for the prevention of amyotrophic lateral sclerosis. Further studies are warranted to replicate our findings and clarify the underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhad496 | DOI Listing |
Life Sci Alliance
April 2025
Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear.
View Article and Find Full Text PDFMethods Enzymol
January 2025
St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia. Electronic address:
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, New York, USA.
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.
View Article and Find Full Text PDFFront Neurosci
January 2025
Neurology Associate P.C., Lincoln, NE, United States.
Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), bulbar involvement significantly impacts psychosocial, emotional, and physical health. A validated objective marker is however lacking to characterize and phenotype bulbar involvement, positing a major barrier to early detection, progress monitoring, and tailored care. This study aimed to bridge this gap by constructing a multiplex functional mandibular muscle network to provide a novel objective measurement tool of bulbar involvement.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!