Variations in the oral microbiome and metabolome of methamphetamine users.

mSystems

Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Published: January 2024

Drug addiction can seriously damage human physical and mental health, while detoxification is a long and difficult process. Although studies have reported changes in the oral microbiome of methamphetamine (METH) users, the role that the microbiome plays in the process of drug addiction is still unknown. This study aims to explore the function of the microbiome based on analysis of the variations in the oral microbiome and metabolome of METH users. We performed the 16S rRNA sequencing analysis based on the oral saliva samples collected from 278 METH users and 105 healthy controls (CTL). In addition, the untargeted metabolomic profiling was conducted based on 220 samples. Compared to the CTL group, alpha diversity was reduced in the group of METH users and the relative abundances of and were significantly increased, while the relative abundances of and were significantly decreased. Variations were also detected in oral metabolic pathways, including enhanced tryptophan metabolism, lysine biosynthesis, purine metabolism, and steroid biosynthesis. Conversely, the metabolic pathways of porphyrin metabolism, glutathione metabolism, and pentose phosphate were significantly reduced. It was speculated that four key microbial taxa, i.e., , , , and , could be involved in the toxicity and addiction mechanisms of METH by affecting the above metabolic pathways. It was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders was gradually increased. Our study provides novel insights into exploring the toxic damage and addiction mechanisms underlying the METH addiction.IMPORTANCEIt was found that with the increase of drug use years, the content of tryptamine associated with neuropsychiatric disorders gradually increased. The prediction models based on oral microbiome and metabolome could effectively predict the methamphetamine (METH) smoking. Our study provides novel insights into the exploration of the molecular mechanisms regulating the toxic damage and addiction of METH as well as new ideas for early prevention and treatment strategies of METH addiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804968PMC
http://dx.doi.org/10.1128/msystems.00991-23DOI Listing

Publication Analysis

Top Keywords

oral microbiome
16
meth users
16
microbiome metabolome
12
metabolic pathways
12
meth
9
variations oral
8
drug addiction
8
methamphetamine meth
8
based oral
8
relative abundances
8

Similar Publications

To provide a comprehensive and updated mapping of observational studies assessing the relationship between periodontitis and systemic diseases through a bibliometric and visual analysis. A search was conducted using the Web of Science database, covering the period 1989 to 2024. The Medical Subject Headings (MeSH) from the US National Library of Medicine was used to categorize systemic conditions, focusing on terms unrelated to stomatognathic diseases.

View Article and Find Full Text PDF

Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed.

View Article and Find Full Text PDF

Malnutrition affects over 30 million children annually and has profound immediate and enduring repercussions. Survivors often suffer lasting neurocognitive consequences that impact academic performance and socioeconomic outcomes. Mechanistic understanding of the emergence of these consequences is poorly understood.

View Article and Find Full Text PDF

Introduction: Children with early childhood caries (ECC) show different caries severities and susceptibility in different tooth types and location in the oral cavity. The study aimed to investigate differences in the oral microbiome in ECC subjects stratified according to the severity of caries and between more and less caries prone teeth within the same subjects.

Methods: Supragingival plaque from the upper and lower anterior regions in the oral cavity of subjects were collected in 3 groups of increasing caries severity, G1 - Molar (M) caries only; G2 - Molar and Upper Anterior (UA) caries; and G3 - M + UA + lower anterior (LA) caries were obtained followed by microbiome analysis.

View Article and Find Full Text PDF

Protocol for fecal microbiota transplantation: A microaerophilic approach for mice housed in a specific pathogen-free facility.

STAR Protoc

January 2025

Microbiology & Radiobiology Units, Belgian Nuclear Research Centre SCK CEN, 2400 Mol, Belgium; Bioinformatics Group, Center for Informatics Science, Nile University, Giza, Egypt. Electronic address:

Recently, studies have emerged exploring the potential application of fecal microbiota transplantation (FMT) in pre-clinical settings. Here, we present a protocol for FMT for mice housed in a specific pathogen-free (SPF) facility. We describe steps for sample collection, microaerophilic processing of freshly collected fecal pellets, and administration through oral gavage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!