A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D-QSAR and ADMET studies of morpholino-pyrimidine inhibitors of DprE1 from . | LitMetric

3D-QSAR and ADMET studies of morpholino-pyrimidine inhibitors of DprE1 from .

J Biomol Struct Dyn

Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India.

Published: December 2023

DprE1 is involved in the synthesis of cell wall and is a potent drug target for Tuberculosis (TB) treatment. The structure and dynamics of the loops L-I and L-II flanking the inhibitor binding site was studied using molecular dynamics (MD) simulation and MMPBSA in Amber v18. Docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) of 55 Morpholino-pyrimidine (MP) inhibitors was carried out using Autodock v1.2.0 and Forge v10. ADMET analysis was done using SwissADME and pkCSM. All MP inhibitors docked in the DprE1 binding pocket, making contacts with L-II residues. MD studies showed that L-I and L-II unfold in the absence of the inhibitor but fold stably structure with reduced protein motions in the presence of MP-38, the highest affinity inhibitor. This was confirmed by k-means clustering and secondary structure analysis. L-II residues, L317, F320 and R325 contributed most towards the MMPBSA binding free energy of MP-38. A robust field-based 3D-QSAR model showed values of r = 0.982, r = 0.702 and q = 0.516. The MP inhibitor field points were broadly divided into negative electrostatics near the A, B rings and hydrophobic electrostatics near the D, E rings. Addition of negative groups at methanone position and ring B as well as addition of hydrophobic and bulky groups at ring E will improve activity. Highly active compounds 47, 49 and 50 of MP series exhibited highly favourable drug-like properties. SAR and ADMET insights attained from this model will help in the development of active DprE1 inhibitors in future.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2294496DOI Listing

Publication Analysis

Top Keywords

morpholino-pyrimidine inhibitors
8
l-i l-ii
8
l-ii residues
8
electrostatics rings
8
3d-qsar admet
4
admet studies
4
studies morpholino-pyrimidine
4
inhibitors
4
dpre1
4
inhibitors dpre1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!