The characteristics of biomass and microbial community dynamics, in relation to autotrophic nitrification, were studied in two 20 L stirred tank reactors (STR) with oxic/hypoxic/oxic zones. The bioreactors were fed with synthetic wastewater with stepwise increasing ammonia concentrations (50-200 N mg/L) without organic substrate in the first phase (autotrophic phase) for 35 days (R1) and 15 days (R2), followed by a heterotrophic phase (with supplementation of organic substrate). The settling properties of the biomass, represented by pin-point flocs, gradually improved in both reactors during the autotrophic phase. The pin-point flocs of R1 exhibited granule-like settling properties. The SVI in RI gradually improved to 29 mL/g MLSS, and the corresponding SVI/ SVI gradually improved to 0.88 during the autotrophic phase. The settling properties of the biomass deteriorated in both bioreactors during the heterotrophic phase. The protein to polysaccharide ratio (PN:PS ratio) gradually increased in the extracted EPS (in both, loosely bound (LB) and tightly bound (TB) EPS) during the autotrophic phase, in both bioreactors. The TB:LB EPS ratio was higher when the pin-point flocs of R1 showed granule-like settling properties, followed by a decline in TB:LB EPS ratio during the heterotrophic phase. A combination of molecular approaches (droplet digital-PCR (dd-PCR) and 16S rRNA gene sequencing) revealed that were the predominant nitrifying bacteria in the pin-point flocs that show granular sludge-like settling properties during autotrophic phase in R1. Comammox was the dominant ammonia oxidizer in seed biomass and at low ammonia concentrations in both bioreactors. The relative abundance of canonical ammonia-oxidizing bacteria increased with an increase in influent-ammonia concentrations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726125 | PMC |
http://dx.doi.org/10.3389/fmicb.2023.1307727 | DOI Listing |
Front Microbiol
December 2023
Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
The characteristics of biomass and microbial community dynamics, in relation to autotrophic nitrification, were studied in two 20 L stirred tank reactors (STR) with oxic/hypoxic/oxic zones. The bioreactors were fed with synthetic wastewater with stepwise increasing ammonia concentrations (50-200 N mg/L) without organic substrate in the first phase (autotrophic phase) for 35 days (R1) and 15 days (R2), followed by a heterotrophic phase (with supplementation of organic substrate). The settling properties of the biomass, represented by pin-point flocs, gradually improved in both reactors during the autotrophic phase.
View Article and Find Full Text PDFWater Res
October 2015
School of Environmental Studies and Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada. Electronic address:
A full-scale (FS) activated sludge system treating wastewater from a meat rendering plant with a long history of sludge management problems (pin-point flocs; >80% of floc <50 μm diameter; poor settling) was the focus of a study that entailed characterization of floc properties. This was coupled with parallel well-controlled lab-scale (LS) sequencing batch reactors (SBRs) treating the same wastewater and operated continuously over 1.5 years.
View Article and Find Full Text PDFWater Res
May 2003
Water and Air Quality Laboratory, Department of Environmental Studies, University of the Aegean, Theofrastou and Alkaiou Str., Mytilene 81 100, Greece.
The effect of hexavalent chromium, Cr(VI), addition on various operating parameters of activated sludge process was evaluated. To accomplish this, two parallel lab-scale continuous-flow activated sludge plants were operated. One was used as a control plant, while the other received Cr(VI) concentrations equal to 0.
View Article and Find Full Text PDFWater Sci Technol
January 2003
Institute of Water Quality Control and Waste Management, Technical University of Munich, Garching, Germany.
Settling problems caused by pin-point sludge constitute a serious problem in biological wastewater treatment, particularly in many industrial plants. Until now, most studies focused on the relationship between pin-point sludge formation and either shearing forces or the impact of toxicants. This study deals with the community structure in both the micro- and macrofloc fraction which was analyzed by fluorescent in situ hybridization (FISH) and BIOLOG substrate utilization patterns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!