Aptamer Based SPREETA Sensor for the Detection of G-Protein.

J Microbiol Biotechnol

Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.

Published: March 2024

We have developed an aptamer that specifically binds to to reduce the cellular damage caused by infection and applied it as a biosensor. is one of the major pathogens causing destructive periodontal disease among the periodontal microorganisms constituting complex biofilms. G-protein (PGP) known to play an important role in the transmission of germs was used as a target protein for the screening of aptamer. The aptamer that has binds to the G-protein of , was screened and developed through the Systemic Evolution of Ligands by Exponential Energy (SELEX) method. Modified-Western blot analysis was performed with the aptamer which consisted of 38 single-stranded DNA to confirm the selectivity. ELONA (enzyme linked oligonucleotide assay) used to confirm that the aptamer was sensitive to PGP even at low concentration of 1 μg/ml. For the rapid detection of , we constructed a surface plasmon resonance biosensor with SPREETA using the PGP aptamer. It was confirmed that PGP could be detected as low concentration as at 0.1 pM, which is the minimum concentration of aptamer sensor within 5 min. Based on these results, we have constructed a SPREETA biosensor based on aptamer that can bind to G-protein. It can be used as an infection diagnosis system to rapidly diagnose and analyze oral diseases caused by .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940744PMC
http://dx.doi.org/10.4014/jmb.2310.10042DOI Listing

Publication Analysis

Top Keywords

aptamer
9
aptamer binds
8
low concentration
8
aptamer based
4
based spreeta
4
spreeta sensor
4
sensor detection
4
g-protein
4
detection g-protein
4
g-protein developed
4

Similar Publications

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

An electrochemical aptasensor has been developed specifically for the sensitive and selective determination of ochratoxin A (OTA), one of the most important mycotoxins. The aptasensor utilizes a glassy carbon electrode that has been modified with toluidine blue (TB) encapsulated in a Zn-based metal-organic framework (TB@Zn-MOF). The results demonstrate that in the presence of OTA, the peak current of the differential pulse voltammogram (DPV) related to TB oxidation is notably decreased.

View Article and Find Full Text PDF

An electrochemical aptasensor for the detection of bisphenol A based on triple signal amplification assisted by gold nanoparticles, hemin/G-quadruplex DNAzyme, and exonuclease I.

Mikrochim Acta

December 2024

Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

A triple signal amplified electrochemical aptasensor for the detection of bisphenol A (BPA) was developed for the first time based on gold nanoparticles (AuNPs), hemin/G-quadruplex DNAzyme, and exonuclease I (Exo I) assisted amplification strategies. The BPA aptamer (Apt) hybridized with the capture probe (CP) was fixed on the gold electrode (GE) to form the double-stranded DNA (dsDNA) structure. When BPA was present, the Apt was detached from the GE surface by specific recognition between the BPA and Apt, forming BPA-Apt complexes in solution.

View Article and Find Full Text PDF

Dual-mode exosome detection leveraging a nanozyme-active artificial receptor: PDA@Fe@Zn-based nucleic acid aptamer sensor.

Talanta

December 2024

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China. Electronic address:

Exosomes, extracellular vesicles crucial for intercellular communication, are emerging as significant biomarkers for disease diagnosis, especially in cancer. This study presented a dual-mode exosome detection platform using polydopamine microspheres doped with iron and zinc ions (PDA@Fe@Zn). These materials served as both artificial receptors for nucleic acid aptamers and nanozymes with peroxidase-like activity.

View Article and Find Full Text PDF

Hairpin aptamer and ROS-sensitive microcapsule-mediated glycoprotein determination for the prognosis of colorectal cancer.

Mikrochim Acta

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.

A novel glycoprotein assay was developed by integrating the hairpin aptamer (H-APT)-mediated glycoprotein recognition and the reactive oxygen species-sensitive microcapsule (ROS-MC)-induced signal amplification. The analyzing process begins with the transfer of the target glycoprotein to a chlorin e6 (Ce6)-labeled DNA sequence via H-APT-mediated DNA displacement. Subsequently, the Ce6-labeled DNA was used to induce the disassembly of fluorophore-loaded ROS-MC under 650-nm light irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!