Polycyclic Aromatic Hydrocarbons (PAHs) in Wildfire Smoke Accumulate on Indoor Materials and Create Postsmoke Event Exposure Pathways.

Environ Sci Technol

Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon 97201, United States.

Published: January 2024

Wildfire smoke contains PAHs that, after infiltrating indoors, accumulate on indoor materials through particle deposition and partitioning from air. We report the magnitude and persistence of select surface associated PAHs on three common indoor materials: glass, cotton, and mechanical air filter media. Materials were loaded with PAHs through both spiking with standards and exposure to a wildfire smoke proxy. Loaded materials were aged indoors over ∼4 months to determine PAH persistence. For materials spiked with standards, total PAH decay rates were 0.010 ± 0.002, 0.025 ± 0.005, and 0.051 ± 0.009 day, for mechanical air filter media, glass, and cotton, respectively. PAH decay on smoke-exposed samples is consistent with that predicated by decay constants from spiked materials. Decay curves of smoke loaded samples show that PAH surface concentrations are elevated above background for ∼40 days after the smoke clears. Cleaning processes efficiently remove PAHs, with reductions of 71% and 62% after cleaning smoke-exposed glass with ethanol and a commercial cleaner, respectively. Laundering smoke-exposed cotton in a washing machine and heated drying removed 48% of PAHs. An exposure assessment indicates that both inhalation and dermal PAH exposure pathways may be relevant following wildfire smoke events.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c05547DOI Listing

Publication Analysis

Top Keywords

wildfire smoke
16
indoor materials
12
accumulate indoor
8
exposure pathways
8
glass cotton
8
mechanical air
8
air filter
8
filter media
8
pah decay
8
materials
7

Similar Publications

This short review addresses the pressing issue of lung cancer among firefighters, a population facing unique occupational hazards such as smoke inhalation and asbestos exposure. With lung cancer being a leading global cause of death, the study emphasizes the disproportionate burden on firefighters. Notably, wildfire smoke, containing carcinogenic elements, poses a rising significant threat to firefighters' respiratory health.

View Article and Find Full Text PDF

Impacts of wildfire smoke PM, greenspace and terrain ruggedness on life expectancy in the contiguous United States.

Sci Total Environ

January 2025

Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Wildfire smoke PM has been associated with many adverse health effects. However, little is known about its impact on life expectancy. This study investigated the impact of wildfire smoke PM and its interaction with greenspace and terrain ruggedness on life expectancy in the contiguous United States.

View Article and Find Full Text PDF

Global climate change has triggered frequent extreme weather events, leading to a significant increase in the frequency and intensity of forest fires. Traditional fire monitoring methods such as manual inspections, sensor technologies, and remote sensing satellites have limitations. With the advancement of drone technology and deep learning, using drones combined with artificial intelligence for fire monitoring has become mainstream.

View Article and Find Full Text PDF

Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.

View Article and Find Full Text PDF

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!