A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pharmacogenetic Variants Can Influence Optical Medication Use. | LitMetric

Pharmacogenetic Variants Can Influence Optical Medication Use.

Endocr Metab Immune Disord Drug Targets

Newborn Screening, Metabolic and Genetics Unit, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, 4000-055 Porto, Portugal.

Published: December 2023

Introduction: Single Nucleotide Polymorphisms (SNPs) are used as drug susceptibility biomarkers in metabolic diseases. Alterations in the gene encoding triggers the enzyme flavin monooxygenase 3 (FMO3), involved in the Sulindac metabolization, which also is responsible for the inherited metabolic disorder. Trimethylaminuria (TMAu, OMIM: 602079). DPYD gene variants are associated with the enzyme dihydropyrimidine dehydrogenase deficiency (DPD; OMIM: 274270). This autosomal recessive metabolic disorder, ultimately leads to the inability to metabolize fluoropyrimidines, which causes severe toxicity in individuals treated with these drugs.

Methods: Variants in genes responsible for the expression of enzymes that encode transporters or receptors involved in the metabolization pathways of certain drugs may condition the individuals response to certain drugs, compromising the therapeutic response and clinical prognosis. Thus the sequencing and identification of variants become relevant, not only gain knowledge on effects of these variants' on disease causality but also in terms of its side effects resulting from the coding enzymes responsible for drug metabolization.

Results: It was found that patients with the c.472G>A (p.Glu158Lys) and c.923A>G (p.Glu308Gly) polymorphisms, in homozygosity, in FMO3 gene did not develop polyps, thus have a protective effect in the treatment of Familial Adenomatous Polyposis (PAF). However, in the case of the DPYD gene, c.1905+1G>A (IVS14+1G>A), c.1679T>G (p.Ile560Ser), c.2846A>T (p.Asp949Val) e c.1236G>A/HapB3 variants can be lethal in cancer patients indicated for fluoropyrimidine-based chemotherapy.

Conclusion: Knowledge on the drug mechanisms will affect the therapeutic response of patients treated with a given drug. Thus, pharmacogenetics is an essential tool in personalized medicine, since molecular studies allows the clinician to predict the probability of efficacy and toxicity of certain drugs, resulting higher efficiency in individualizing treatment and also improving the safety of the patient. From a personalized medicine perspective, the study of the characteristics of the drug and its metabolization site, the genes involved in the encoding of enzymes responsible for its metabolization will be of great interest.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0118715303271934231211085226DOI Listing

Publication Analysis

Top Keywords

metabolic disorder
8
dpyd gene
8
therapeutic response
8
enzymes responsible
8
personalized medicine
8
drug
5
pharmacogenetic variants
4
variants influence
4
influence optical
4
optical medication
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!