Background: The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) guidelines recommend using variant enrichment among cases as "strong" evidence for pathogenicity per the PS4 criterion. However, quantitative support for PS4 thresholds from real-world Mendelian case-control cohorts is lacking.

Methods: To address this gap, we evaluated and established PS4 thresholds using data from the Chinese Deafness Genetics Consortium. A total of 9,050 variants from 13,845 patients with hearing loss (HL) and 6,570 ancestry-matched controls were analyzed. Positive likelihood ratio and local positive likelihood ratio values were calculated to determine the thresholds corresponding to each strength of evidence across three variant subsets.

Results: In subset 1, consisting of variants present in both cases and controls with an allele frequency (AF) in cases ≥ 0.0005, an odds ratio (OR) ≥ 6 achieved strong evidence, while OR ≥ 3 represented moderate evidence. For subset 2, which encompassed variants present in both cases and controls with a case AF < 0.0005, and subset 3, comprising variants found only in cases and absent from controls, we defined the PS4_Supporting threshold (OR > 2.27 or allele count ≥ 3) and the PS4_Moderate threshold (allele count ≥ 6), respectively. Reanalysis applying the adjusted PS4 criteria changed the classification of 15 variants and enabled diagnosis of an additional four patients.

Conclusions: Our study quantified evidence strength thresholds for variant enrichment in genetic HL cases, highlighting the importance of defining disease/gene-specific thresholds to improve the precision and accuracy of clinical genetic testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726519PMC
http://dx.doi.org/10.1186/s13073-023-01271-7DOI Listing

Publication Analysis

Top Keywords

variant enrichment
12
thresholds variant
8
hearing loss
8
ps4 thresholds
8
positive likelihood
8
likelihood ratio
8
variants cases
8
cases controls
8
cases
5
evidence
5

Similar Publications

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

X-linked moesin-associated immunodeficiency (X-MAID) is a recently identified combined immunodeficiency caused by a mutation in the moesin () gene. It is characterized by cytopenias, hypogammaglobulinemia, poor immune response to vaccine antigens, and increased susceptibility to early-life infections. We report a patient with adult-onset neutropenia, lymphopenia, inadequate response to the pneumococcal polysaccharide vaccine (PPSV23), and recurrent bacterial infections associated with a hemizygous deletion.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) represents a significant global public health challenge. This study aims to identify biomarkers of renal fibrosis and elucidate the relationship between unilateral ureteral obstruction (UUO), immune infiltration, and cell death.

Methods: Gene expression matrices for UUO were retrieved from the gene expression omnibus (GSE36496, GSE79443, GSE217650, and GSE217654).

View Article and Find Full Text PDF

Identification of genetic mechanisms of non-isolated auditory neuropathy with various phenotypes in Chinese families.

Orphanet J Rare Dis

January 2025

Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100048, China.

Background: Non-isolated auditory neuropathy (AN), or syndromic AN, is marked by AN along with additional systemic manifestations. The diagnostic process is challenging due to its varied symptoms and overlap with other syndromes. This study focuses on two mitochondrial function-related genes which result in non-isolated AN, FDXR and TWNK, providing a summary and enrichment analysis of genes associated with non-isolated AN to elucidate the genotype-phenotype correlation and underlying mechanisms.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!