Objective: To explore whether the utility of neurofilament light chain (NfL), as a biomarker to aid amyotrophic lateral sclerosis (ALS) therapy development, would be enhanced by obtaining formal qualification from the US Food and Drug Administration for a defined context-of-use.

Methods: Consensus discussion among academic, industry, and patient advocacy group representatives.

Results: A wealth of scientific evidence supports the use of NfL as a prognostic, response, and potential safety biomarker in the broad ALS population, and as a risk/susceptibility biomarker among the subset of SOD1 pathogenic variant carriers. Although NfL has not yet been formally qualified for any of these contexts-of-use, the US Food and Drug Administration has provided accelerated approval for an SOD1-lowering antisense oligonucleotide, based partially on the recognition that a reduction in NfL is reasonably likely to predict a clinical benefit.

Interpretation: The increasing incorporation of NfL into ALS therapy development plans provides evidence that its utility-as a prognostic, response, risk/susceptibility, and/or safety biomarker-is already widely accepted by the community. The willingness of the US Food and Drug Administration to base regulatory decisions on rigorous peer-reviewed data-absent formal qualification, leads us to conclude that formal qualification, despite some benefits, is not essential for ongoing and future use of NfL as a tool to aid ALS therapy development. Although the balance of considerations for and against seeking NfL biomarker qualification will undoubtedly vary across different diseases and contexts-of-use, the robustness of the published data and careful deliberations of the ALS community may offer valuable insights for other disease communities grappling with the same issues. ANN NEUROL 2024;95:211-216.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842825PMC
http://dx.doi.org/10.1002/ana.26860DOI Listing

Publication Analysis

Top Keywords

als therapy
12
therapy development
12
formal qualification
12
food drug
12
drug administration
12
biomarker qualification
8
neurofilament light
8
light chain
8
amyotrophic lateral
8
lateral sclerosis
8

Similar Publications

Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.

View Article and Find Full Text PDF

Brain distribution study of [C]-Riluzole following intranasal administration in mice.

Int J Pharm

January 2025

Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China. Electronic address:

Amyotrophic lateral sclerosis (ALS) presents a substantial challenge due to its complex nature, limited effective treatment options, and modest benefits from current therapies in slowing disease progression. This study explores the potential of intranasal delivery to enhance the CNS delivery of riluzole (RLZ), a standard ALS treatment which is subject to blood-brain barrier efflux mechanisms. Additionally, the impact of elacridar (ELC), an efflux pump inhibitor, on IN RLZ CNS bioavailability was examined.

View Article and Find Full Text PDF

The human-caused climate crisis is advancing relentlessly and poses a global threat. But to what extent is our psyche also in crisis due to climate change? This article explores the profound impacts of the climate crisis and environmental destruction on mental health, advocating for a comprehensive, ecologically-oriented approach to psychiatry and psychotherapy.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!