The implementation of artificial intelligence (AI) and machine learning (ML) techniques in healthcare has garnered significant attention in recent years, especially as a result of their potential to revolutionize personalized medicine. Despite advances in the treatment and management of asthma, a significant proportion of patients continue to suffer acute exacerbations, irrespective of disease severity and therapeutic regimen. The situation is further complicated by the constellation of factors that influence disease activity in a patient with asthma, such as medical history, biomarker phenotype, pulmonary function, level of healthcare access, treatment compliance, comorbidities, personal habits, and environmental conditions. A growing body of work has demonstrated the potential for AI and ML to accurately predict asthma exacerbations while also capturing the entirety of the patient experience. However, application in the clinical setting remains mostly unexplored, and important questions on the strengths and limitations of this technology remain. This review presents an overview of the rapidly evolving landscape of AI and ML integration into asthma management by providing a snapshot of the existing scientific evidence and proposing potential avenues for future applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838858 | PMC |
http://dx.doi.org/10.1007/s12325-023-02743-3 | DOI Listing |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!