A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrophobically gated memristive nanopores for neuromorphic applications. | LitMetric

Signal transmission in the brain relies on voltage-gated ion channels, which exhibit the electrical behaviour of memristors, resistors with memory. State-of-the-art technologies currently employ semiconductor-based neuromorphic approaches, which have already demonstrated their efficacy in machine learning systems. However, these approaches still cannot match performance achieved by biological neurons in terms of energy efficiency and size. In this study, we utilise molecular dynamics simulations, continuum models, and electrophysiological experiments to propose and realise a bioinspired hydrophobically gated memristive nanopore. Our findings indicate that hydrophobic gating enables memory through an electrowetting mechanism, and we establish simple design rules accordingly. Through the engineering of a biological nanopore, we successfully replicate the characteristic hysteresis cycles of a memristor and construct a synaptic device capable of learning and forgetting. This advancement offers a promising pathway for the realization of nanoscale, cost- and energy-effective, and adaptable bioinspired memristors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728163PMC
http://dx.doi.org/10.1038/s41467-023-44019-yDOI Listing

Publication Analysis

Top Keywords

hydrophobically gated
8
gated memristive
8
memristive nanopores
4
nanopores neuromorphic
4
neuromorphic applications
4
applications signal
4
signal transmission
4
transmission brain
4
brain relies
4
relies voltage-gated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!