High-performance and functional fully bio-based polylactic acid/polypropylene carbonate blends by in situ multistep reaction-induced interfacial control.

Int J Biol Macromol

Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China; College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.

Published: February 2024

Using a solvent-free radical grafting technique, glycidyl methacrylate (GMA) and maleic anhydride (MAH) were used as functionalized graft monomers, styrene (St) as a copolymer monomer, and grafted onto polylactic acid (PLA). A series of PLA-g-(GMA/MAH-co-St) graft copolymers were prepared by adjusting the GMA/MAH ratio. Subsequently, the prepared graft copolymers were used as a compatibilizer with PLA and polypropylene carbonate (PPC) for melt blending to prepare PLA/PPC/PLA-g-(GMA/MAH-co-St) blends. The effects of changes in the GMA/MAH ratio in the graft copolymer on the thermodynamics, rheology, optics, degradation performance, mechanical properties, and microstructure of the blend were studied. The results found that GMA, MAH, and St were successfully grafted onto PLA, and the PLA-g-(GMA/MAH-co-St) graft copolymer obtained from the reaction had a good toughening effect on the PLA/PPC blend system, which significantly improved the mechanical properties of the PLA/PPC/PLA-g-(GMA/MAH-co-St) blend without reducing its degradation performance, resulting in a biodegradable blend material with excellent comprehensive performance. In the PLA-g-(GMA/MAH-co-St) grafting reaction system, when GMA/MAH = 1.5/1.5 (w/w), the grafting degree of the graft copolymer increased most significantly, from 0.83 phr to 1.51 phr. This composition of graft copolymer can effectively improve the compatibility between PLA and PPC. The resulting PLA/PPC blend can maintain good melt flow properties (MFR of 14.51 g/10 min), high transparency, and low haze (light transmittance of 91.56 %, haze of 20.5 %), while significantly improving its thermal stability (T, T, and E increased by 12.87 °C, 20.33 °C, and 32.00 kJ/mol, respectively). Moreover, when introducing PLA-g-(GMA/MAH-co-St) (GMA/MAH = 1.5/1.5 (wt/wt)) graft copolymer into the system, the toughness of the PLA/PPC/PLA-g-(GMA/MAH-co-St) blend system is optimal, with the notch impact strength and fracture elongation increasing to 184.6 % and 535.4 % of the PLA/PPC blend, respectively, at which point the fracture surface of the impact sample shows a wrinkled fracture feature indicative of toughness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128799DOI Listing

Publication Analysis

Top Keywords

graft copolymer
20
pla/ppc blend
12
graft
8
pla-g-gma/mah-co-st graft
8
graft copolymers
8
gma/mah ratio
8
degradation performance
8
mechanical properties
8
blend system
8
pla/ppc/pla-g-gma/mah-co-st blend
8

Similar Publications

Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.

Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.

View Article and Find Full Text PDF

We report on 3D-printable polymer networks based on the combination of modified alginate-based polymer blends; two alginate polymers were prepared, namely, a thermoresponsive polymer grafted with P(NIPAM--NtBAM)-NH copolymer chains and a second polymer modified with diol/pH-sensitive 3-aminophenylboronic acid. The gelation properties were determined by the hydrophobic association of the thermosensitive chains and the formation of boronate esters. At a mixing ratio of 70/30 wt % of the thermo/diol-responsive polymers, the semi-interpenetrating network exhibited an optimum storage modulus ranging from ca.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation.

View Article and Find Full Text PDF

The research focuses on the characterization and evaluation of drug delivery efficiency of a microwave-assisted, free-radical synthesized polyacrylamide-grafted Assam Bora rice starch (ABRS) graft copolymer (ABRS-g-PAM). Percentage grafting efficiency (% GE) and intrinsic viscosity were chosen as the optimization parameters. The optimized ABRS-g-PAM Grade Formulation 4 (GF4) was found to be the best grade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!