Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169352 | DOI Listing |
Environ Toxicol Pharmacol
January 2025
Facultad de Medicina. Grupo de Genética Médica, Universidad de Antioquia, Medellín- Colombia. Electronic address:
Diesel exhaust particles (DEPs) are atmospheric pollutants associated with adverse health effects. In response to their impact, natural gas (NG) has emerged as a promising alternative fuel due to its cleaner combustion. Although the cytotoxicity and genotoxicity of DEPs from diesel or NG engines have been extensively studied, the impact of dual natural gas-diesel systems remains unexplored.
View Article and Find Full Text PDFExplor Target Antitumor Ther
November 2024
Division of Pulmonary, Critical Care, and Sleep Disorders Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
There has been a rapid expansion of immunotherapy options for non-small cell lung cancer (NSCLC) over the past two decades, particularly with the advent of immune checkpoint inhibitors. Despite the emerging role of immunotherapy in adjuvant and neoadjuvant settings though, relatively few patients will respond to immunotherapy which can be problematic due to expense and toxicity; thus, the development of biomarkers capable of predicting immunotherapeutic response is imperative. Due to the promise of a noninvasive, personalized approach capable of providing comprehensive, real-time monitoring of tumor heterogeneity and evolution, there has been wide interest in the concept of using circulating tumor DNA (ctDNA) to predict treatment response.
View Article and Find Full Text PDFFront Immunol
January 2025
Wuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
Introduction: Non-small cell lung cancer (NSCLC) constitutes approximately 80-85% of cancer-related fatalities globally, and direct and indirect comparisons of various therapies for NSCLC are lacking. In this study, we aimed to compare the efficacy and safety of immune checkpoint inhibitors (ICIs) in patients with epidermal growth factor receptor (EGFR)-mutated NSCLC.
Methods: The electronic databases were systematically searched from inception until March 18, 2024.
Equine Vet J
January 2025
Setor de Patologia Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
Background: In horses, systemic calcinosis is a rare syndrome characterised by muscle lesion associated with the mineralisation of large muscle groups or other organs, in the absence of an alternative cause for the calcification, such as toxic, enzootic or metabolic. Molecular and histopathological aspects of the disease are still poorly elucidated.
Objectives: To describe the epidemiological, pathological and molecular aspects of systemic calcinosis in a convenience sample of six horses submitted to necropsy in the Southern and Midwestern regions of Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!