Perfluorooctane sulfonic acid (PFOS) as an archetypal representative of per- and polyfluoroalkyl substances (PFAS) is ubiquitously distributed in the environment and extensively detected in human bodies. Although accumulating evidence is suggestive of the deleterious effects of PFOS on male reproduction, the direct toxicity of PFOS towards spermatogenic cells and the relevant mechanisms remain poorly understood. The aims of the present study were to explore the direct effects and underlying molecular mechanisms of PFOS on spermatogenesis. Through integrating animal study, transcriptome profiling, in silico toxicological approaches, and in vitro validation study, we identified the molecular initiating event and key events contributing to PFOS-induced spermatogenic impairments. The mouse experiments revealed that spermatocytes were involved in PFOS-induced spermatogenic disorders and the activation of peroxisome proliferator-activated receptor delta (PPARδ) was linked to spermatocyte loss in PFOS-administrated mice. GC-2spd(ts) cells were treated with an increased gradient of PFOS, which was relevant to environmental and occupational exposure levels of PFOS in populations. Following 72-h treatment, cells was harvested for RNA sequencing. The transcriptome profiling and benchmark dose (BMD) modeling identified endoplasmic reticulum (ER) stress as the key event for PFOS-mediated spermatocyte apoptosis and determined the point-of-departure (PoD) for perturbations of ER stress signaling. Based on the calculated PoD value, further bioinformatics analyses combined with in vitro and in vivo validations showed that PFOS caused metabolic stress by activating PPARδ in mouse spermatocytes, which was responsible for Beclin 1-involved inositol 1,4,5-trisphosphate receptor (IP3R) sensitization. The disruption of IP3R-mediated ER calcium homeostasis triggered ER calcium depletion, leading to ER stress and apoptosis in mouse spermatocytes exposed to PFOS. This study systematically investigated the direct impacts of PFOS on spermatogenesis and unveiled the relevant molecular mechanism of PFOS-induced spermatogenic disorders, providing novel insights and potential preventive/therapeutic targets for PFAS-associated male reproductive toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123167DOI Listing

Publication Analysis

Top Keywords

spermatogenic disorders
12
pfos-induced spermatogenic
12
pfos
9
endoplasmic reticulum
8
calcium homeostasis
8
metabolic stress
8
spermatocyte apoptosis
8
perfluorooctane sulfonic
8
pfos spermatogenesis
8
transcriptome profiling
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!