Stirred bead milling proved to be an efficient cell destruction technique in a biorefinery unit for the extraction of over 95 % of proteins and 60 % of carbohydrates from the green marine microalga Tetraselmis suecica. Optimum conditions, expressed in terms of metabolite yield and energy consumption, were found for average values of bead size and agitator rotation speed. The higher the microalgae concentration, up to 100 g.L, which is adequate for biofilm algae growth in an industrial unit, the more efficient the cell destruction process. Cell destruction rates and metabolite extraction yields are similar in pendular and recycling modes, but the pendular configuration reduces the residence time of the suspension in the grinding chamber, which is less costly. With regard to the cell destruction mechanism, it was concluded that bead shocks first damage cells by permeabilizing them, and that after a longer period, all cells are shredded and destroyed, forming elongated debris.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.130181DOI Listing

Publication Analysis

Top Keywords

cell destruction
16
tetraselmis suecica
8
efficient cell
8
integrating wet
4
wet stirred-bead
4
stirred-bead milling
4
milling tetraselmis
4
suecica biorefinery
4
biorefinery operating
4
operating parameters
4

Similar Publications

During type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody- negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).

View Article and Find Full Text PDF

This study aims to compare the expression levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in osteoblasts infiltrated with H37Rv (H37Rv) and to understand the differential bone destruction in spinal tuberculosis (STB) versus spondylitis (BS). Primary osteoblasts were isolated and cultured from the cranial bones of 2-5 days old mice and characterized by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). H37Rv and were cultured to the logarithmic phase, and transfection solutions were prepared.

View Article and Find Full Text PDF
Article Synopsis
  • Photoresponsive drug delivery systems offer enhanced cancer treatment but face issues with size and limited light penetration.
  • A new near infrared responsive system was created using azobenzene-modified silica nanoparticles that release a drug upon specific light excitation.
  • The design allows for targeted delivery to cancer cell nuclei, facilitating DNA damage and cell destruction, making it a promising approach for effective cancer therapy.
View Article and Find Full Text PDF
Article Synopsis
  • Zolbetuximab is a chimeric monoclonal antibody designed to target the Claudin 18.2 protein, which is overexpressed in certain gastrointestinal cancers, notably gastric and gastroesophageal junction adenocarcinomas.
  • This drug initiates an immune response to attack cancer cells when combined with standard chemotherapy regimens, and it has been approved as a first-line treatment for advanced, unresectable cancers in specific patient populations.
  • Clinical trials show that zolbetuximab significantly improves progression-free survival and overall survival rates compared to chemotherapy alone, while maintaining a relatively safe profile for patients.
View Article and Find Full Text PDF

Periodontitis is a multifactorial disease characterized by chronic destruction of the periodontal supporting tissues and is closely associated with the dysbiosis of the plaque biofilm. It is the leading cause of tooth loss in adults. Bacterial extracellular vesicles (BEVs) are released from bacteria, which range in size from 20 to 400 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!