Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment.

Environ Res

Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), 64200, Rahim Yar Khan, Pakistan. Electronic address:

Published: March 2024

AI Article Synopsis

  • Petrochemical-based synthetic plastics are harmful to humans, wildlife, and the environment, necessitating a shift towards biopolymers as a sustainable alternative.
  • Research on bioplastics is increasing due to their potential for eco-friendliness, low carbon footprint, and ability to reduce waste by using organic materials.
  • Although bioplastic production faces challenges like low yields, high costs, and poor mechanical strength, exploring innovative production methods can help commercialize these sustainable options.

Article Abstract

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.117949DOI Listing

Publication Analysis

Top Keywords

synthetic plastics
12
organic waste
8
production
8
bioplastics
7
organic
4
organic waste-to-bioplastics
4
waste-to-bioplastics conversion
4
conversion eco-friendly
4
eco-friendly technologies
4
technologies approaches
4

Similar Publications

The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.

View Article and Find Full Text PDF

Polybenzimidazole (PBI) is a high-performance polymer known for its excellent thermal stability, mechanical strength, and chemical resistance, attributes that are derived from its unique structure comprising repeated benzene and imidazole rings. However, limitations such as relatively low thermal stability and moisture sensitivity restrict its application as a super engineering plastic. In this study, amide groups are incorporated into the PBI backbone to synthesize the copolymer poly(BI--A), effecting a structural modification at the molecular level.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a commonly synthetic chemical mainly used in producing plastic items. It is an endocrine-disrupting compound that causes irreversible health and environmental damage. Developing a simple method for BPA effective quantitative monitoring is emergently necessary.

View Article and Find Full Text PDF

Neuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.

View Article and Find Full Text PDF

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!