The combination of organic and heavy metal pollutants can be effectively and sustainably remediated using bioremediation, which is acknowledged as an environmentally friendly and economical approach. In this study, bacterial agent YH was used as the research object to explore its potential and mechanism for bioremediation of pyrene-heavy metal co-contaminated system. Under the optimal conditions (pH 7.0, temperature 35°C), it was observed that pyrene (PYR), Pb(II), and Cu(II) were effectively eliminated in liquid medium, with removal rates of 43.46%, 97.73% and 81.60%, respectively. The microscopic characterization (SEM/TEM-EDS, XPS, XRD and FTIR) results showed that Pb(II) and Cu(II) were eliminated by extracellular adsorption and intracellular accumulation of YH. Furthermore, the presence of resistance gene clusters (cop, pco, cus and pbr) plays an important role in the detoxification of Pb(II) and Cu(II) by strains YH. The degradation rate of PYR reached 72.51% in composite contaminated soil, which was 4.33 times that of the control group, suggesting that YH promoted the dissipation of pyrene. Simultaneously, the content of Cu, Pb and Cr in the form of F4 (residual state) increased by 25.17%, 6.34% and 36.88%, respectively, indicating a decrease in the bioavailability of heavy metals. Furthermore, YH reorganized the microbial community structure and enriched the abundance of hydrocarbon degradation pathways and enzyme-related functions. This study would provide an effective microbial agent and new insights for the remediation of soil and water contaminated with organic pollutants and heavy metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119841 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!