Hetero-interface engineering has been widely employed to develop supported multicomponent catalysts for water electrolysis, but it still remains a substantial challenge for supported single atom alloys. Herein a conductive oxide MoO supported Ir Ni single atom alloys (Ir Ni@MoO SAAs) bifunctional electrocatalysts through surface segregation coupled with galvanic replacement reaction, where the Ir atoms are atomically anchored onto the surface of Ni nanoclusters via the Ir-Ni coordination accompanied with electron transfer from Ni to Ir is reported. Benefiting from the unique structure, the Ir Ni@MoO SAAs not only exhibit low overpotential of 48.6 mV at 10 mA cm and Tafel slope of 19 mV dec for hydrogen evolution reaction, but also show highly efficient alkaline water oxidation with overpotential of 280 mV at 10 mA cm . Their overall water electrolysis exhibits a low cell voltage of 1.52 V at 10 mA cm and excellent durability. Experiments and theoretical calculations reveal that the Ir-Ni interface effectively weakens hydrogen binding energy, and decoration of the Ir single atoms boost surface reconstruction of Ni species to enhance the coverage of intermediates (OH*) and switch the potential-determining step. It is suggested that this approach opens up a promising avenue to design efficient and durable precious metal bifunctional electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202305437 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
High-resolution fluorescence imaging of ultracold atoms and molecules is paramount to performing quantum simulation and computation in optical lattices and tweezers. Imaging durations in these experiments typically range from a millisecond to a second, significantly limiting the cycle time. In this work, we present fast, 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.
View Article and Find Full Text PDFMolecules
January 2025
College of Engineering and Technology, Southwest University, Chongqing 400715, China.
Based on density functional theory calculations, this study analyzed the gas-sensing performance of TiCT (T=O, F, OH) monolayers modified with precious metal atoms (Ag and Au) for HCHO and CH gas molecules. Firstly, stable structures of Ag- and Au-single-atom doped TiCT (T=O, F, OH) surfaces were constructed and then HCHO and CH gas molecules were set to approach the modified structures at different initial positions. The most stable adsorption structure was selected for further analysis of the adsorption energy, adsorption distance, charge transfer, charge deformation density, total density of states, and partial density of states.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Formamide condensation with Ni can generate the NC structure, widely recognized as an efficient catalyst for electrocatalytic CO reduction reaction (CORR). To improve the utilization efficiency of Ni atoms, we introduced metal oxides as substrates to modulate the growth of a formamide-Ni (FA-Ni) condensate. FA-Ni@TiO demonstrated 2.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The functional properties of tetraaryl compounds, M(aryl) (M = transition metal or group 14 element), are dictated not only by their common tetrahedral geometry but also by their central atom. The identity of this atom may serve to modulate the reactivity, electrochemical, magnetic, and optical behavior of the molecular species, or of extended materials built from appropriate tetraaryl building blocks, but this has not yet been systematically evaluated. Toward this goal, here we probe the influence of Os(IV), C, and Si central atoms on the spectroelectrochemical properties of a series of redox-active tetra(ferrocenylaryl) complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!