Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study quantifies the influence of electrolytes on the kinetics of the spontaneous emulsification phenomenon (SEP) of heavy hydrocarbons in a nonionic surfactant solution. The rate of emulsifying hexadecane in Triton X-100, with the presence of sodium chloride and potassium chloride, has been measured using a technique of monitoring single oil droplet photography. The emulsion droplet size produced in the process was measured under the same conditions by using dynamic light scattering. The data obtained from the two experiments were employed to investigate the mass transfer coefficient of the surfactant molecules through the intermediate layer formed between hexadecane and the surfactant solution. It was found that the electrolytes in an aqueous solution increase the surfactant diffusion rate through the intermediate layer and reduce the emulsion droplet size. As a result, both electrolytes reduce the rate of spontaneous emulsification, with potassium chloride having a more substantial reduction. A model was developed to quantify the influence of electrolytes on the kinetics of the SEP. The data and modeling results verify the influence of ions on the kinetics of spontaneous emulsification. The results provide a significant foundation for predicting the solubilization of heavy hydrocarbons in an electrolyte solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c02107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!