An E-band (60-90 GHz) multi-channel Doppler backscattering (DBS) system with X-mode polarization has been installed on the Experimental Advanced Superconducting Tokamak (EAST), which can measure the turbulence at five different radial locations simultaneously. This system can launch 31 fixed microwave frequencies in the range of 60-90 GHz with a 1 GHz interval into the plasma, and five probing signals are selected by employing a reference signal and multiple filters. During experiments, the frequency of the reference signal is tunable in the E-band, and the selected probing signals can be changed as needed without any other adjustments, which can be performed in one shot or between shots. Furthermore, the incident angle can be adjusted from -10° to 20°, and the wavenumber range is 4-25 cm-1 with a wavenumber resolution of Δk/k ≤ 0.35. Ray tracing simulations are employed to calculate the scattering locations and the perpendicular wavenumber. In this article, the hardware design, ray tracing, and initial results obtained from the EAST plasma will be presented.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0166949DOI Listing

Publication Analysis

Top Keywords

multi-channel doppler
8
doppler backscattering
8
60-90 ghz
8
probing signals
8
reference signal
8
ray tracing
8
e-band multi-channel
4
backscattering system
4
system east
4
east e-band
4

Similar Publications

A VHF phased array radar for atmospheric dynamics observation is installed at the University of Calcutta, Kolkata. The Calcutta University Stratosphere-Troposphere Radar (CUSTR) operates at 53 MHz with 475 three sub-element Yagi-Uda antenna array. The CUSTR system is a high-power fully active phased array system with a dedicated 2 kW solid-state Transmit-Receiver Module (TRM) attached to each antenna, providing a total peak power of 950 kW with 47.

View Article and Find Full Text PDF

Azimuth multi-channel synthetic aperture radar (SAR) has always been an important technical means to achieve high-resolution wide-swath (HRWS) SAR imaging. However, in the space-borne azimuth multi-channel SAR system, random phase noise will be produced during the operation of each channel receiver. The phase noise of each channel is superimposed on the SAR echo signal of the corresponding channel, which will cause the phase imbalance between the channels and lead to the generation of false targets.

View Article and Find Full Text PDF

High-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging with azimuth multi-channel always suffers from channel phase and amplitude errors. Compared with spatial-invariant error, the range-dependent channel phase error is intractable due to its spatial dependency characteristic. This paper proposes a novel parameterized channel equalization approach to reconstruct the unambiguous SAR imagery.

View Article and Find Full Text PDF

Through the wall human heart beat detection using single channel CW radar.

Front Physiol

January 2024

Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, Bangladesh.

Single-channel continuous wave (CW) radar is widely used and has gained popularity due to its simple architecture despite its inability to measure the range and angular location of the target. Its popularity arises in the industry due to the simplicity of the required components, the low demands on the sampling rate, and their low costs. Through-the-wall life signs detection using microwave Doppler Radar is an active area of research and investigation.

View Article and Find Full Text PDF

Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which modulate neurovascular coupling-a process that regulates cerebral hemodynamics in response to neuronal activation. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects has been challenging, partially due to limitations of neuroimaging techniques able to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!