We theoretically derive and validate with large scale simulations a remarkably accurate power law scaling of errors for the restricted active space density matrix renormalization group (DMRG-RAS) method [J. Phys. Chem. A 126, 9709] in electronic structure calculations. This yields a new extrapolation method, DMRG-RAS-X, which reaches chemical accuracy for strongly correlated systems such as the chromium dimer, dicarbon up to a large cc-pVQZ basis and even a large chemical complex such as the FeMoco with significantly lower computational demands than those of previous methods. The method is free of empirical parameters, performed robustly and reliably in all examples we tested, and has the potential to become a vital alternative method for electronic structure calculations in quantum chemistry and more generally for the computation of strong correlations in nuclear and condensed matter physics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c01001DOI Listing

Publication Analysis

Top Keywords

chemical accuracy
8
restricted active
8
active space
8
space density
8
density matrix
8
matrix renormalization
8
renormalization group
8
electronic structure
8
structure calculations
8
predicting fci
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!