A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Joint Experimental and Theoretical Study on Deposition Morphologies in Polymer Sessile Droplets. | LitMetric

Joint Experimental and Theoretical Study on Deposition Morphologies in Polymer Sessile Droplets.

Langmuir

Key Laboratory of Functional Polymer Materials of Ministry of Education, Tianjin Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

Published: January 2024

Although past experimental and theoretical research has made substantial progress in understanding evaporation behaviors in various suspensions, the fundamental mechanism for polymer sessile droplets is still lacking. One critical effect is the molecular weight on the evaporation behaviors. Here, systematic experiments are carried out to investigate the evaporation behavior of polymer droplets under the effects of polymer concentration, evaporation rate, and especially molecular weight. We obtain polymer films with various morphologies with molecular weights ranging from 2 orders of magnitude to 4 orders of magnitude and polymer concentration across 4 orders of magnitude. We further develop a theoretical model based on the Onsager principle to explain the evaporation mechanism from a dynamic perspective. Analysis indicates that increasing molecular weight or polymer concentration enhances the contact angle hysteresis and slows down the evaporation, resulting in the transition from multiring to coffee ring and eventually to uniform films. The findings offer a guideline for achieving the desired deposition patterns via droplet processing techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03038DOI Listing

Publication Analysis

Top Keywords

molecular weight
12
polymer concentration
12
orders magnitude
12
experimental theoretical
8
polymer sessile
8
sessile droplets
8
evaporation behaviors
8
weight polymer
8
polymer
7
evaporation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!