The traditional drug development process requires a significant investment in workforce and financial resources. Drug repositioning as an efficient alternative has attracted much attention during the last few years. Despite the wide application and success of the method, there are still many shortcomings in the existing model. For example, sparse datasets will seriously affect the existing methods' performance. Additionally, these methods do not pay attention to the noise in datasets. In response to the above defects, we propose a semantic-enriched augmented graph contrastive learning with an adaptive denoising method, called SGCD. This method enhances data from the perspective of the embedding layer, deeply mines potential neighborhood relation-ships in semantic space, and combines similar drugs in the semantic neighborhoods into prototype comparison targets, thus effectively mitigating the impact of data sparsity on the model. Moreover, to enhance the model's robustness to noisy data, we use the adaptive denoising method, which can effectively identify noisy data in the training process. Exhaustive experiments on multiple real datasets show the effectiveness of the proposed model. The code implementation is available at https://github.com/yuhuimin11/SGCD-master.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3344031DOI Listing

Publication Analysis

Top Keywords

adaptive denoising
12
graph contrastive
8
contrastive learning
8
learning adaptive
8
drug repositioning
8
denoising method
8
noisy data
8
semantic-enhanced graph
4
denoising drug
4
repositioning traditional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!