Purpose: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models.
Experimental Design: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity.
Results: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups.
Conclusions: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10905524 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-23-2130 | DOI Listing |
Cells
January 2025
Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy.
Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.
View Article and Find Full Text PDFCells
January 2025
DIMEAS, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
Haematological malignancies comprise a diverse group of life-threatening systemic diseases, including leukaemia, lymphoma, and multiple myeloma. Currently available therapies, including chemotherapy, immunotherapy, and CAR-T cells, are often associated with important side effects and with the development of drug resistance and, consequently, disease relapse. In the last decades, it was largely demonstrated that the tumor microenvironment significantly affects cancer cell proliferation and tumor response to treatment.
View Article and Find Full Text PDFHCA Healthc J Med
December 2024
University of North Texas Health Science Center at Fort Worth, Fort Worth, TX.
Introduction: Bortezomib is a reversible proteasome inhibitor that is a first-line chemotherapeutic agent for multiple myeloma. Bortezomib can be administered intravenously or subcutaneously with similar efficacy. Subcutaneous administration has fewer side effects.
View Article and Find Full Text PDFBr J Cancer Res
June 2024
The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA.
Background: Early diagnosis of systemic light-chain amyloidosis (AL) is needed because 25% of patients die within months of diagnosis. In patients with monoclonal gammopathy of undetermined significance (MGUS) or smoldering multiple myeloma (SMM) of the λ isotype, we explored the use of 2 screening variables: a free light chain difference of 23mg/L between λ and k and presence of IGLV genes that occur more frequently in AL.
Methods: Patients contacted us and we sent HIPAA release and consent forms for discussion by phone.
Hematology
December 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, RH, Saudi Arabia.
Multiple Myeloma (MM) is a malignancy characterized by abnormal production of monoclonal immunoglobulins in plasma cells. Bispecific antibodies have emerged as a significant advancement in MM treatment, offering high effectiveness and specificity by targeting different antigens such as BCMA, CD38, and FcRH5. However, the risk of infection poses a major challenge in MM patients, which is thought to be influenced by various factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!