Chlorinated volatile organic compound (cVOC) degradation rate constants are crucial information for site management. Conventional approaches generate rate estimates from the monitoring and modeling of cVOC concentrations. This requires time series data collected along the flow path of the plume. The estimates of rate constants are often plagued by confounding issues, making predictions cumbersome and unreliable. Laboratory data suggest that targeted quantitative analysis of () biomarker genes (qPCR) and proteins (qProt) can be directly correlated with reductive dechlorination activity. To assess the potential of qPCR and qProt measurements to predict rates, we collected data from cVOC-contaminated aquifers. At the benchmark study site, the rate constant for degradation of -dichloroethene (cDCE) extracted from monitoring data was 11.0 ± 3.4 yr, and the rate constant predicted from the abundance of TceA peptides was 6.9 yr. The rate constant for degradation of vinyl chloride (VC) from monitoring data was 8.4 ± 5.7 yr, and the rate constant predicted from the abundance of TceA peptides was 5.2 yr. At the other study sites, the rate constants for cDCE degradation predicted from qPCR and qProt measurements agreed within a factor of 4. Under the right circumstances, qPCR and qProt measurements can be useful to rapidly predict rates of cDCE and VC biodegradation, providing a major advance in effective site management.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c06231DOI Listing

Publication Analysis

Top Keywords

rate constant
16
rate constants
12
qpcr qprot
12
qprot measurements
12
cvoc degradation
8
rate
8
site management
8
predict rates
8
constant degradation
8
monitoring data
8

Similar Publications

Background: Anatomic total shoulder arthroplasty are highly successful procedures for treatment of glenohumeral arthritis to reduce pain, improve range of motion, and overall quality of life. However, the long-term survivorship of the implant systems is less widely documented in the existing literature. The purpose of this study was to establish the long-term patient outcomes and identify factors influencing the postoperative implant survivorship of total anatomic shoulder arthroplasty devices/procedures utilizing the short-stemmed prosthesis and hybrid glenoid components of the Comprehensive Shoulder System (Zimmer Biomet, Warsaw, IN, USA) at an average of ten years.

View Article and Find Full Text PDF

Biogas upgrading using aqueous bamboo-derived activated carbons.

Bioresour Technol

January 2025

Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden. Electronic address:

CO/CH separation is crucial for biogas upgrading. In this study, the bamboo-derived activated carbons (BACs) were prepared with different ratios of potassium hydroxide (KOH)/bamboo charcoal (BC), and the hybrid sorbents of aqueous BACs were developed for CO/CH separation. Both the gas solubility and sorption rate were measured, and Henry's constant and liquid-side mass-transfer coefficient as well as the CO/CH selectivity were calculated.

View Article and Find Full Text PDF

Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract.

View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Development, analysis, and effectiveness of an F-C-MgO/rGOP catalyst for the degradation of atrazine using ozonation process: Synergistic effect, mechanism, and toxicity assessment.

J Environ Manage

January 2025

Department of Chemistry, College of Science and Humanites at Al-Quway'iyahl, Shaqra University, Saudi Arabia. Electronic address:

This study considered the effects of fluoride, MgO, sucrose, and rGO on the characteristics of the fluoride-carbon-MgO/rGO predicted (F-C-MgO/rGOP) catalyst and its effectiveness in the catalytic ozonation process (COP) for atrazine elimination from aqueous solutions. Using a mixture design, the catalyst composition was optimized to 13.6% sucrose, 50% Mg (OH)2, 25% NaF, and 11.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!