AI Article Synopsis

  • CircRNAs are a new type of non-coding RNA with potential functions including sponging microRNAs and binding to RNA-binding proteins, and are implicated in neuropsychiatric disorders.
  • The study focused on identifying differentially expressed circular RNAs (DEcircRNAs) and messenger RNAs (DEmRNAs) in the medial prefrontal cortex (mPFC) of mice after morphine exposure, revealing significant changes in their expression.
  • Functional analysis linked these DEcircRNAs and DEmRNAs to neuroplasticity, and the research constructed ceRNA networks to highlight the role of circRNAs in morphine-associated contextual memory.

Article Abstract

Circular RNAs (circRNAs) are a novel type of non-coding RNAs. Despite the fact that the functional mechanisms of most circRNAs remain unknown, emerging evidence indicates that circRNAs could sponge microRNAs (miRNAs), bind to RNA binding proteins (RBP), and even be translated into protein. Recent research has demonstrated the crucial roles played by circRNAs in neuropsychiatric disorders. The medial prefrontal cortex (mPFC) is a crucial component of drug reward circuitry and exerts top-down control over cognitive functions. However, there is currently limited knowledge about the correlation between circRNAs and morphine-associated contextual memory in the mPFC. Here, we performed morphine-induced conditioned place preference (CPP) in mice and extracted mPFC tissue for RNA-sequencing. Our study represented the first attempt to identify differentially expressed circRNAs (DEcircRNAs) and mRNAs (DEmRNAs) in the mPFC after morphine-induced CPP. We identified 47 significantly up-regulated DEcircRNAs and 429 significantly up-regulated DEmRNAs, along with 74 significantly down-regulated DEcircRNAs and 391 significantly down-regulated DEmRNAs. Functional analysis revealed that both DEcircRNAs and DEmRNAs were closely associated with neuroplasticity. To further validate the DEcircRNAs, we conducted qRT-PCR, Sanger sequencing, and RNase R digestion assays. Additionally, using an integrated bioinformatics approach, we constructed ceRNA networks and identified critical circRNA/miRNA/mRNA axes that contributed to the development of morphine-associated contextual memory. In summary, our study provided novel insights into the role of circRNAs in drug-related memory, specifically from the perspective of ceRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-023-03859-xDOI Listing

Publication Analysis

Top Keywords

circular rnas
8
cerna networks
8
medial prefrontal
8
prefrontal cortex
8
morphine-associated contextual
8
contextual memory
8
circrnas
7
decircrnas
5
integrative analysis
4
analysis morphine-induced
4

Similar Publications

CircRNA-loaded DC vaccine in combination with low-dose gemcitabine induced potent anti-tumor immunity in pancreatic cancer model.

Cancer Immunol Immunother

January 2025

National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.

Although promising, dendritic cell (DC) vaccines may not suffice to fully inhibit tumor progression alone, mainly due to the short expression time of the antigen in DC vaccines, immunosuppressive tumor microenvironment, and tumor antigenic modulation. Overcoming the limitations of DC vaccines is expected to further enhance their anti-tumor effects. In this study, we constructed a circRNA-loaded DC vaccine utilizing the inherent stability of circular RNA to enhance the expression level and duration of the antigen within the DC vaccine.

View Article and Find Full Text PDF

Background: Mitochondria are organelles where energy production takes place via oxidative phosphorylation, thus mitochondrial function influences the organs with large energy consumption, such as the brain. Mitochondria contain their own circular genome (mtDNA), which encodes essential proteins/RNAs involved in oxidative phosphorylation. The maternal inheritance of mtDNA, combined with a higher risk of Alzheimer's disease (AD) observed in females, suggest mtDNA may have a role in AD.

View Article and Find Full Text PDF

Background: Circular RNA represents a distinctive form of noncoding RNA resulting from back-splicing of exons and introns in mRNA. CircRNA has been shown play important roles in neurological diseases, such as Alzheimer's disease (AD). Some recent studies also have demonstrated circRNA is enriched in the mammal brain and differentially altered during AD.

View Article and Find Full Text PDF

Background: Circular RNAs (circRNAs) play multifaceted roles to precisely control expression of broad gene networks. These highly stable molecules are often accumulated in the mammalian brain and thought to serve as "memory molecules" that govern the long process of aging. Mounting evidence demonstrated circRNA dysregulation in the postmortem brains of Alzheimer's disease (AD).

View Article and Find Full Text PDF

The influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ-sulfanyl-ethan-1-ol (CFSF-ethanol) and 2,2,2-trifluoroethanol (TFE) on the secondary structure of melittin was studied using circular dichroism (CD) and molecular dynamics (MD) simulations. In water, melittin transitions into a random coil. However, upon addition of even as little as 1% by volume of CFSF-ethanol, the secondary structure of melittin stabilizes as a helix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!